亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Traffic speed is central to characterizing the fluidity of the road network. Many transportation applications rely on it, such as real-time navigation, dynamic route planning, and congestion management. Rapid advances in sensing and communication techniques make traffic speed detection easier than ever. However, due to sparse deployment of static sensors or low penetration of mobile sensors, speeds detected are incomplete and far from network-wide use. In addition, sensors are prone to error or missing data due to various kinds of reasons, speeds from these sensors can become highly noisy. These drawbacks call for effective techniques to recover credible estimates from the incomplete data. In this work, we first identify the issue as a spatiotemporal kriging problem and propose a Laplacian enhanced low-rank tensor completion (LETC) framework featuring both lowrankness and multi-dimensional correlations for large-scale traffic speed kriging under limited observations. To be specific, three types of speed correlation including temporal continuity, temporal periodicity, and spatial proximity are carefully chosen and simultaneously modeled by three different forms of graph Laplacian, named temporal graph Fourier transform, generalized temporal consistency regularization, and diffusion graph regularization. We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging. By performing experiments on two public million-level traffic speed datasets, we finally draw the conclusion and find our proposed LETC achieves the state-of-the-art kriging performance even under low observation rates, while at the same time saving more than half computing time compared with baseline methods. Some insights into spatiotemporal traffic data modeling and kriging at the network level are provided as well.

相關內容

Deep learning has fundamentally transformed artificial intelligence, but the ever-increasing complexity in deep learning models calls for specialized hardware accelerators. Optical accelerators can potentially offer enhanced performance, scalability, and energy efficiency. However, achieving nonlinear mapping, a critical component of neural networks, remains challenging optically. Here, we introduce a design that leverages multiple scattering in a reverberating cavity to passively induce optical nonlinear random mapping, without the need for additional laser power. A key advantage emerging from our work is that we show we can perform optical data compression, facilitated by multiple scattering in the cavity, to efficiently compress and retain vital information while also decreasing data dimensionality. This allows rapid optical information processing and generation of low dimensional mixtures of highly nonlinear features. These are particularly useful for applications demanding high-speed analysis and responses such as in edge computing devices. Utilizing rapid optical information processing capabilities, our optical platforms could potentially offer more efficient and real-time processing solutions for a broad range of applications. We demonstrate the efficacy of our design in improving computational performance across tasks, including classification, image reconstruction, key-point detection, and object detection, all achieved through optical data compression combined with a digital decoder. Notably, we observed high performance, at an extreme compression ratio, for real-time pedestrian detection. Our findings pave the way for novel algorithms and architectural designs for optical computing.

We introduce the nested stochastic block model (NSBM) to cluster a collection of networks while simultaneously detecting communities within each network. NSBM has several appealing features including the ability to work on unlabeled networks with potentially different node sets, the flexibility to model heterogeneous communities, and the means to automatically select the number of classes for the networks and the number of communities within each network. This is accomplished via a Bayesian model, with a novel application of the nested Dirichlet process (NDP) as a prior to jointly model the between-network and within-network clusters. The dependency introduced by the network data creates nontrivial challenges for the NDP, especially in the development of efficient samplers. For posterior inference, we propose several Markov chain Monte Carlo algorithms including a standard Gibbs sampler, a collapsed Gibbs sampler, and two blocked Gibbs samplers that ultimately return two levels of clustering labels from both within and across the networks. Extensive simulation studies are carried out which demonstrate that the model provides very accurate estimates of both levels of the clustering structure. We also apply our model to two social network datasets that cannot be analyzed using any previous method in the literature due to the anonymity of the nodes and the varying number of nodes in each network.

Neural networks have achieved remarkable performance in various application domains. Nevertheless, a large number of weights in pre-trained deep neural networks prohibit them from being deployed on smartphones and embedded systems. It is highly desirable to obtain lightweight versions of neural networks for inference in edge devices. Many cost-effective approaches were proposed to prune dense and convolutional layers that are common in deep neural networks and dominant in the parameter space. However, a unified theoretical foundation for the problem mostly is missing. In this paper, we identify the close connection between matrix spectrum learning and neural network training for dense and convolutional layers and argue that weight pruning is essentially a matrix sparsification process to preserve the spectrum. Based on the analysis, we also propose a matrix sparsification algorithm tailored for neural network pruning that yields better pruning result. We carefully design and conduct experiments to support our arguments. Hence we provide a consolidated viewpoint for neural network pruning and enhance the interpretability of deep neural networks by identifying and preserving the critical neural weights.

Business statistics play a crucial role in implementing a data-driven strategic plan at the enterprise level to employ various analytics where the outcomes of such a plan enable an enterprise to enhance the decision-making process or to mitigate risks to the organization. In this work, a strategic plan informed by the statistical analysis is introduced for a financial company called LendingClub, where the plan is comprised of exploring the possibility of onboarding a big data platform along with advanced feature selection capacities. The main objectives of such a plan are to increase the company's revenue while reducing the risks of granting loans to borrowers who cannot return their loans. In this study, different hypotheses formulated to address the company's concerns are studied, where the results reveal that the amount of loans profoundly impacts the number of borrowers charging off their loans. Also, the proposed strategic plan includes onboarding advanced analytics such as machine learning technologies that allow the company to build better generalized data-driven predictive models.

We investigate trade-offs in static and dynamic evaluation of hierarchical queries with arbitrary free variables. In the static setting, the trade-off is between the time to partially compute the query result and the delay needed to enumerate its tuples. In the dynamic setting, we additionally consider the time needed to update the query result under single-tuple inserts or deletes to the database. Our approach observes the degree of values in the database and uses different computation and maintenance strategies for high-degree (heavy) and low-degree (light) values. For the latter it partially computes the result, while for the former it computes enough information to allow for on-the-fly enumeration. We define the preprocessing time, the update time, and the enumeration delay as functions of the light/heavy threshold. By appropriately choosing this threshold, our approach recovers a number of prior results when restricted to hierarchical queries. We show that for a restricted class of hierarchical queries, our approach achieves worst-case optimal update time and enumeration delay conditioned on the Online Matrix-Vector Multiplication Conjecture.

In this paper, we propose an online convex optimization method with two different levels of adaptivity. On a higher level, our method is agnostic to the specific type and curvature of the loss functions, while at a lower level, it can exploit the niceness of the environments and attain problem-dependent guarantees. To be specific, we obtain $\mathcal{O}(\ln V_T)$, $\mathcal{O}(d \ln V_T)$ and $\hat{\mathcal{O}}(\sqrt{V_T})$ regret bounds for strongly convex, exp-concave and convex loss functions, respectively, where $d$ is the dimension, $V_T$ denotes problem-dependent gradient variations and $\hat{\mathcal{O}}(\cdot)$-notation omits logarithmic factors on $V_T$. Our result finds broad implications and applications. It not only safeguards the worst-case guarantees, but also implies the small-loss bounds in analysis directly. Besides, it draws deep connections with adversarial/stochastic convex optimization and game theory, further validating its practical potential. Our method is based on a multi-layer online ensemble incorporating novel ingredients, including carefully-designed optimism for unifying diverse function types and cascaded corrections for algorithmic stability. Remarkably, despite its multi-layer structure, our algorithm necessitates only one gradient query per round, making it favorable when the gradient evaluation is time-consuming. This is facilitated by a novel regret decomposition equipped with customized surrogate losses.

Existing traffic signal control systems rely on oversimplified rule-based methods, and even RL-based methods are often suboptimal and unstable. To address this, we propose a cooperative multi-objective architecture called Multi-Objective Multi-Agent Deep Deterministic Policy Gradient (MOMA-DDPG), which estimates multiple reward terms for traffic signal control optimization using age-decaying weights. Our approach involves two types of agents: one focuses on optimizing local traffic at each intersection, while the other aims to optimize global traffic throughput. We evaluate our method using real-world traffic data collected from an Asian country's traffic cameras. Despite the inclusion of a global agent, our solution remains decentralized as this agent is no longer necessary during the inference stage. Our results demonstrate the effectiveness of MOMA-DDPG, outperforming state-of-the-art methods across all performance metrics. Additionally, our proposed system minimizes both waiting time and carbon emissions. Notably, this paper is the first to link carbon emissions and global agents in traffic signal control.

In this article, we propose two kinds of neural networks inspired by power method and inverse power method to solve linear eigenvalue problems. These neural networks share similar ideas with traditional methods, in which the differential operator is realized by automatic differentiation. The eigenfunction of the eigenvalue problem is learned by the neural network and the iterative algorithms are implemented by optimizing the specially defined loss function. The largest positive eigenvalue, smallest eigenvalue and interior eigenvalues with the given prior knowledge can be solved efficiently. We examine the applicability and accuracy of our methods in the numerical experiments in one dimension, two dimensions and higher dimensions. Numerical results show that accurate eigenvalue and eigenfunction approximations can be obtained by our methods.

Short-packet communication (SPC) and unmanned aerial vehicles (UAVs) are anticipated to play crucial roles in the development of 5G-and-beyond wireless networks and the Internet of Things (IoT). In this paper, we propose a secure SPC system, where a UAV serves as a mobile decode-and-forward (DF) relay, periodically receiving and relaying small data packets from a remote IoT device to its receiver in two hops with strict latency requirements, in the presence of an eavesdropper. This system requires careful optimization of important design parameters, such as the coding blocklengths of both hops, transmit powers, and UAV's trajectory. While the overall optimization problem is nonconvex, we tackle it by applying a block successive convex approximation (BSCA) approach to divide the original problem into three subproblems and solve them separately. Then, an overall iterative algorithm is proposed to obtain the final design with guaranteed convergence. Our proposed low-complexity algorithm incorporates 3D trajectory design and resource management to optimize the effective average secrecy throughput of the communication system over the course of UAV-relay's mission. Simulation results demonstrate significant performance improvements compared to various benchmark schemes and provide useful design insights on the coding blocklengths and transmit powers along the trajectory of the UAV.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

北京阿比特科技有限公司