亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we delve into the challenge of optimizing joint communication and computation for semantic communication over wireless networks using a probability graph framework. In the considered model, the base station (BS) extracts the small-sized compressed semantic information through removing redundant messages based on the stored knowledge base. Specifically, the knowledge base is encapsulated in a probability graph that encapsulates statistical relations. At the user side, the compressed information is accurately deduced using the same probability graph employed by the BS. While this approach introduces an additional computational overhead for semantic information extraction, it significantly curtails communication resource consumption by transmitting concise data. We derive both communication and computation cost models based on the inference process of the probability graph. Building upon these models, we introduce a joint communication and computation resource allocation problem aimed at minimizing the overall energy consumption of the network, while accounting for latency, power, and semantic constraints. To address this problem, we obtain a closed-form solution for transmission power under a fixed semantic compression ratio. Subsequently, we propose an efficient linear search-based algorithm to attain the optimal solution for the considered problem with low computational complexity. Simulation results underscore the effectiveness of our proposed system, showcasing notable improvements compared to conventional non-semantic schemes.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Performer · 知識 (knowledge) · Integration · ONCE ·
2024 年 2 月 11 日

In the midst of the rapid integration of artificial intelligence (AI) into real world applications, one pressing challenge we confront is the phenomenon of model drift, wherein the performance of AI models gradually degrades over time, compromising their effectiveness in real-world, dynamic environments. Once identified, we need techniques for handling this drift to preserve the model performance and prevent further degradation. This study investigates two prominent quality aware strategies to combat model drift: data quality assessment and data conditioning based on prior model knowledge. The former leverages image quality assessment metrics to meticulously select high-quality training data, improving the model robustness, while the latter makes use of learned feature vectors from existing models to guide the selection of future data, aligning it with the model's prior knowledge. Through comprehensive experimentation, this research aims to shed light on the efficacy of these approaches in enhancing the performance and reliability of semantic segmentation models, thereby contributing to the advancement of computer vision capabilities in real-world scenarios.

In this paper, we propose a methodology for the analysis of questionnaire data along with its application on discovering insights from investor data motivated by a day trading competition. The questionnaire includes categorical questions, which are reduced to binary questions, 'yes' or 'no'. The methodology reduces dimensionality by grouping questions and participants with similar responses using clustering analysis. Rule discovery was performed by using a conversion rate metric. Innovative visual representations were proposed to validate the cluster analysis and the relation discovery between questions. When crossing with financial data, additional insights were revealed related to the recognized clusters.

In this paper, we explain the universal approximation capabilities of deep residual neural networks through geometric nonlinear control. Inspired by recent work establishing links between residual networks and control systems, we provide a general sufficient condition for a residual network to have the power of universal approximation by asking the activation function, or one of its derivatives, to satisfy a quadratic differential equation. Many activation functions used in practice satisfy this assumption, exactly or approximately, and we show this property to be sufficient for an adequately deep neural network with $n+1$ neurons per layer to approximate arbitrarily well, on a compact set and with respect to the supremum norm, any continuous function from $\mathbb{R}^n$ to $\mathbb{R}^n$. We further show this result to hold for very simple architectures for which the weights only need to assume two values. The first key technical contribution consists of relating the universal approximation problem to controllability of an ensemble of control systems corresponding to a residual network and to leverage classical Lie algebraic techniques to characterize controllability. The second technical contribution is to identify monotonicity as the bridge between controllability of finite ensembles and uniform approximability on compact sets.

Time series analysis is relevant in various disciplines such as physics, biology, chemistry, and finance. In this paper, we present a novel neural network architecture that integrates elements from ResNet structures, while introducing the innovative incorporation of the Taylor series framework. This approach demonstrates notable enhancements in test accuracy across many of the baseline datasets investigated. Furthermore, we extend our method to incorporate a recursive step, which leads to even further improvements in test accuracy. Our findings underscore the potential of our proposed model to significantly advance time series analysis methodologies, offering promising avenues for future research and application.

Learning time-series models is useful for many applications, such as simulation and forecasting. In this study, we consider the problem of actively learning time-series models while taking given safety constraints into account. For time-series modeling we employ a Gaussian process with a nonlinear exogenous input structure. The proposed approach generates data appropriate for time series model learning, i.e. input and output trajectories, by dynamically exploring the input space. The approach parametrizes the input trajectory as consecutive trajectory sections, which are determined stepwise given safety requirements and past observations. We analyze the proposed algorithm and evaluate it empirically on a technical application. The results show the effectiveness of our approach in a realistic technical use case.

In this work, we examine a network of agents operating asynchronously, aiming to discover an ideal global model that suits individual local datasets. Our assumption is that each agent independently chooses when to participate throughout the algorithm and the specific subset of its neighbourhood with which it will cooperate at any given moment. When an agent chooses to take part, it undergoes multiple local updates before conveying its outcomes to the sub-sampled neighbourhood. Under this setup, we prove that the resulting asynchronous diffusion strategy is stable in the mean-square error sense and provide performance guarantees specifically for the federated learning setting. We illustrate the findings with numerical simulations.

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

In this paper, we present a new method for detecting road users in an urban environment which leads to an improvement in multiple object tracking. Our method takes as an input a foreground image and improves the object detection and segmentation. This new image can be used as an input to trackers that use foreground blobs from background subtraction. The first step is to create foreground images for all the frames in an urban video. Then, starting from the original blobs of the foreground image, we merge the blobs that are close to one another and that have similar optical flow. The next step is extracting the edges of the different objects to detect multiple objects that might be very close (and be merged in the same blob) and to adjust the size of the original blobs. At the same time, we use the optical flow to detect occlusion of objects that are moving in opposite directions. Finally, we make a decision on which information we keep in order to construct a new foreground image with blobs that can be used for tracking. The system is validated on four videos of an urban traffic dataset. Our method improves the recall and precision metrics for the object detection task compared to the vanilla background subtraction method and improves the CLEAR MOT metrics in the tracking tasks for most videos.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司