亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Autonomous driving systems require a quick and robust perception of the nearby environment to carry out their routines effectively. With the aim to avoid collisions and drive safely, autonomous driving systems rely heavily on object detection. However, 2D object detections alone are insufficient; more information, such as relative velocity and distance, is required for safer planning. Monocular 3D object detectors try to solve this problem by directly predicting 3D bounding boxes and object velocities given a camera image. Recent research estimates time-to-contact in a per-pixel manner and suggests that it is more effective measure than velocity and depth combined. However, per-pixel time-to-contact requires object detection to serve its purpose effectively and hence increases overall computational requirements as two different models need to run. To address this issue, we propose per-object time-to-contact estimation by extending object detection models to additionally predict the time-to-contact attribute for each object. We compare our proposed approach with existing time-to-contact methods and provide benchmarking results on well-known datasets. Our proposed approach achieves higher precision compared to prior art while using a single image.

相關內容

Recent advances in reinforcement learning (RL) heavily rely on a variety of well-designed benchmarks, which provide environmental platforms and consistent criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL (MARL), a plethora of benchmarks based on cooperative games have spurred the development of algorithms that improve the scalability of cooperative multi-agent systems. However, for the competitive setting, a lightweight and open-sourced benchmark with challenging gaming dynamics and visual inputs has not yet been established. In this work, we present FightLadder, a real-time fighting game platform, to empower competitive MARL research. Along with the platform, we provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics to characterize the performance and exploitability of agents. We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode, and expose the difficulty of training a non-exploitable agent without human knowledge and demonstrations in two-player mode. FightLadder provides meticulously designed environments to address critical challenges in competitive MARL research, aiming to catalyze a new era of discovery and advancement in the field. Videos and code at //sites.google.com/view/fightladder/home.

Backdoor attacks involve the injection of a limited quantity of poisoned examples containing triggers into the training dataset. During the inference stage, backdoor attacks can uphold a high level of accuracy for normal examples, yet when presented with trigger-containing instances, the model may erroneously predict them as the targeted class designated by the attacker. This paper explores strategies for mitigating the risks associated with backdoor attacks by examining the filtration of poisoned samples.We primarily leverage two key characteristics of backdoor attacks: the ability for multiple backdoors to exist simultaneously within a single model, and the discovery through Composite Backdoor Attack (CBA) that altering two triggers in a sample to new target labels does not compromise the original functionality of the triggers, yet enables the prediction of the data as a new target class when both triggers are present simultaneously.Therefore, a novel three-stage poisoning data filtering approach, known as Composite Backdoor Poison Filtering (CBPF), is proposed as an effective solution. Firstly, utilizing the identified distinctions in output between poisoned and clean samples, a subset of data is partitioned to include both poisoned and clean instances. Subsequently, benign triggers are incorporated and labels are adjusted to create new target and benign target classes, thereby prompting the poisoned and clean data to be classified as distinct entities during the inference stage. The experimental results indicate that CBPF is successful in filtering out malicious data produced by six advanced attacks on CIFAR10 and ImageNet-12. On average, CBPF attains a notable filtering success rate of 99.91% for the six attacks on CIFAR10. Additionally, the model trained on the uncontaminated samples exhibits sustained high accuracy levels.

As edge-based automatic speech recognition (ASR) technologies become increasingly prevalent for the development of intelligent and personalized assistants, three important challenges must be addressed for these resource-constrained ASR models, i.e., adaptivity, incrementality, and inclusivity. We propose a novel ASR framework, PI-Whisper, in this work and show how it can improve an ASR's recognition capabilities adaptively by identifying different speakers' characteristics in real-time, how such an adaption can be performed incrementally without repetitive retraining, and how it can improve the equity and fairness for diverse speaker groups. More impressively, our proposed PI-Whisper framework attains all of these nice properties while still achieving state-of-the-art accuracy with up to 13.7% reduction of the word error rate (WER) with linear scalability with respect to computing resources.

Despite achieving promising fairness-error trade-offs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to the training pipeline of the prediction model. In these situations, post-processing is a viable alternative. However, current methods are tailored to specific problem settings and fairness definitions and hence, are not as broadly applicable as in-processing. In this work, we propose a framework that turns any regularized in-processing method into a post-processing approach. This procedure prescribes a way to obtain post-processing techniques for a much broader range of problem settings than the prior post-processing literature. We show theoretically and through extensive experiments that our framework preserves the good fairness-error trade-offs achieved with in-processing and can improve over the effectiveness of prior post-processing methods. Finally, we demonstrate several advantages of a modular mitigation strategy that disentangles the training of the prediction model from the fairness mitigation, including better performance on tasks with partial group labels.

Understanding the interdependence between autonomous and human-operated vehicles remains an ongoing challenge, with significant implications for the safety and feasibility of autonomous driving.This interdependence arises from inherent interactions among road users.Thus, it is crucial for Autonomous Vehicles (AVs) to understand and analyze the intentions of human-driven vehicles, and to display behavior comprehensible to other traffic participants.To this end, this paper presents GTP-UDRIVE, a unified game-theoretic trajectory planner and decision-maker considering a mixed-traffic environment. Our model considers the intentions of other vehicles in the decision-making process and provides the AV with a human-like trajectory, based on the clothoid interpolation technique.% This study investigates a solver based on Particle Swarm Optimization (PSO) that quickly converges to an optimal decision.Among highly interactive traffic scenarios, the intersection crossing is particularly challenging. Hence, we choose to demonstrate the feasibility and effectiveness of our method in real traffic conditions, using an experimental autonomous vehicle at an unsignalized intersection. Testing results reveal that our approach is suitable for 1) Making decisions and generating trajectories simultaneously. 2) Describing the vehicle's trajectory as a piecewise clothoid and enforcing geometric constraints. 3) Reducing search space dimensionality for the trajectory optimization problem.

Traditional robotic motion planning methods often struggle with fixed resolutions in dynamically changing environments. To address these challenges, we introduce the A-OctoMap, an adaptive Octo-Tree structure that enhances spatial representation and facilitates real-time, efficient motion planning. This novel framework allows for dynamic space partitioning and multi-resolution queries, significantly improving computational efficiency and precision. Key innovations include a tree-based data structure for enhanced geometric processing, real-time map updating for accurate trajectory planning, and efficient collision detection. Our extensive testing shows superior navigation safety and efficiency in complex settings compared to conventional methods. A-OctoMap sets a new standard for adaptive spatial mapping in autonomous systems, promising significant advancements in navigating unpredictable environments.

The ability of CodeLLMs to generate executable and functionally correct code at the repository-level scale remains largely unexplored. We introduce RepoExec, a novel benchmark for evaluating code generation at the repository-level scale. RepoExec focuses on three main aspects: executability, functional correctness through automated test case generation with high coverage rate, and carefully crafted cross-file contexts to accurately generate code. Our work explores a controlled scenario where developers specify necessary code dependencies, challenging the model to integrate these accurately. Experiments show that while pretrained LLMs outperform instruction-tuned models in correctness, the latter excel in utilizing provided dependencies and demonstrating debugging capabilities. We also introduce a new instruction-tuned dataset that focuses on code dependencies and demonstrate that CodeLLMs fine-tuned on our dataset have a better capability to leverage these dependencies effectively. RepoExec aims to provide a comprehensive evaluation of code functionality and alignment with developer intent, paving the way for more reliable and applicable CodeLLMs in real-world scenarios. The dataset and source code can be found at~\url{//github.com/FSoft-AI4Code/RepoExec}.

Evaluating the performance of autonomous vehicle planning algorithms necessitates simulating long-tail safety-critical traffic scenarios. However, traditional methods for generating such scenarios often fall short in terms of controllability and realism and neglect the dynamics of agent interactions. To mitigate these limitations, we introduce SAFE-SIM, a novel diffusion-based controllable closed-loop safety-critical simulation framework. Our approach yields two distinct advantages: 1) the generation of realistic long-tail safety-critical scenarios that closely emulate real-world conditions, and 2) enhanced controllability, enabling more comprehensive and interactive evaluations. We develop a novel approach to simulate safety-critical scenarios through an adversarial term in the denoising process, which allows an adversarial agent to challenge a planner with plausible maneuvers while all agents in the scene exhibit reactive and realistic behaviors. Furthermore, we propose novel guidance objectives and a partial diffusion process that enables a user to control key aspects of the generated scenarios, such as the collision type and aggressiveness of the adversarial driver, while maintaining the realism of the behavior. We validate our framework empirically using the NuScenes dataset, demonstrating improvements in both realism and controllability. These findings affirm that diffusion models provide a robust and versatile foundation for safety-critical, interactive traffic simulation, extending their utility across the broader landscape of autonomous driving. For supplementary videos, visit our project at //safe-sim.github.io/.

Due to the continuously improving capabilities of mobile edges, recommender systems start to deploy models on edges to alleviate network congestion caused by frequent mobile requests. Several studies have leveraged the proximity of edge-side to real-time data, fine-tuning them to create edge-specific models. Despite their significant progress, these methods require substantial on-edge computational resources and frequent network transfers to keep the model up to date. The former may disrupt other processes on the edge to acquire computational resources, while the latter consumes network bandwidth, leading to a decrease in user satisfaction. In response to these challenges, we propose a customizeD slImming framework for incompatiblE neTworks(DIET). DIET deploys the same generic backbone (potentially incompatible for a specific edge) to all devices. To minimize frequent bandwidth usage and storage consumption in personalization, DIET tailors specific subnets for each edge based on its past interactions, learning to generate slimming subnets(diets) within incompatible networks for efficient transfer. It also takes the inter-layer relationships into account, empirically reducing inference time while obtaining more suitable diets. We further explore the repeated modules within networks and propose a more storage-efficient framework, DIETING, which utilizes a single layer of parameters to represent the entire network, achieving comparably excellent performance. The experiments across four state-of-the-art datasets and two widely used models demonstrate the superior accuracy in recommendation and efficiency in transmission and storage of our framework.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

北京阿比特科技有限公司