The Grundy number of a graph is the maximum number of colours used by the ``First-Fit'' greedy colouring algorithm over all vertex orderings. Given a vertex ordering $\sigma= v_1,\dots,v_n$, the ``First-Fit'' greedy colouring algorithm colours the vertices in the order of $\sigma$ by assigning to each vertex the smallest colour unused in its neighbourhood. By restricting this procedure to vertex orderings that are connected, we obtain {\em connected greedy colourings}. For some graphs, all connected greedy colourings use exactly $\chi(G)$ colours; they are called {\em good graphs}. On the opposite, some graphs do not admit any connected greedy colouring using only $\chi(G)$ colours; they are called {\em ugly graphs}. We show that no perfect graph is ugly. We also give simple proofs of this fact for subclasses of perfect graphs (block graphs, comparability graphs), and show that no $K_4$-minor free graph is ugly.
Enumerating all connected subgraphs of a given order from graphs is a computationally challenging task. In this paper, we propose two algorithms for enumerating all connected induced subgraphs of a given order from connected undirected graphs. The first algorithm is a variant of a previous well-known algorithm. The algorithm enumerates all connected induced subgraphs of order $k$ in a bottom-up manner. The data structures that lead to unit time element checking and linear space are presented. Different from previous algorithms that either work in a bottom-up manner or in a reverse search manner, an algorithm that enumerates all connected induced subgraphs of order $k$ in a top-down manner by recursively deleting vertices is proposed. The data structures used in the implementation are also presented. The correctness and complexity of the top-down algorithm is analysed and proven. Experimental results show that the variant bottom-up algorithm outperforms the other algorithms for enumerating connected induced subgraphs of small order, and the top-down algorithm is fastest among the state-of-the-art algorithms for enumerating connected induced subgraphs of large order.
In this paper we prove upper and lower bounds on the minimal spherical dispersion. In particular, we see that the inverse $N(\varepsilon,d)$ of the minimal spherical dispersion is, for fixed $\varepsilon>0$, up to logarithmic terms linear in the dimension $d$. We also derive upper and lower bounds on the expected dispersion for points chosen independently and uniformly at random from the Euclidean unit sphere.
We study vulnerability of a uniformly distributed random graph to an attack by an adversary who aims for a global change of the distribution while being able to make only a local change in the graph. We call a graph property $A$ anti-stochastic if the probability that a random graph $G$ satisfies $A$ is small but, with high probability, there is a small perturbation transforming $G$ into a graph satisfying $A$. While for labeled graphs such properties are easy to obtain from binary covering codes, the existence of anti-stochastic properties for unlabeled graphs is not so evident. If an admissible perturbation is either the addition or the deletion of one edge, we exhibit an anti-stochastic property that is satisfied by a random unlabeled graph of order $n$ with probability $(2+o(1))/n^2$, which is as small as possible. We also express another anti-stochastic property in terms of the degree sequence of a graph. This property has probability $(2+o(1))/(n\ln n)$, which is optimal up to factor of 2.
Let $f$ be a nonnegative integer valued function on the vertex set of a graph. A graph is \textbf{strictly $f$-degenerate} if each nonempty subgraph $\Gamma$ has a vertex $v$ such that $\mathrm{deg}_{\Gamma}(v) < f(v)$. In this paper, we define a new concept, strictly $f$-degenerate transversal, which generalizes list coloring, signed coloring, DP-coloring, $L$-forested-coloring, and $(f_{1}, f_{2}, \dots, f_{s})$-partition. A \textbf{cover} of a graph $G$ is a graph $H$ with vertex set $V(H) = \bigcup_{v \in V(G)} X_{v}$, where $X_{v} = \{(v, 1), (v, 2), \dots, (v, s)\}$; the edge set $\mathscr{M} = \bigcup_{uv \in E(G)}\mathscr{M}_{uv}$, where $\mathscr{M}_{uv}$ is a matching between $X_{u}$ and $X_{v}$. A vertex set $R \subseteq V(H)$ is a \textbf{transversal} of $H$ if $|R \cap X_{v}| = 1$ for each $v \in V(G)$. A transversal $R$ is a \textbf{strictly $f$-degenerate transversal} if $H[R]$ is strictly $f$-degenerate. The main result of this paper is a degree type result, which generalizes Brooks' theorem, Gallai's theorem, degree-choosable result, signed degree-colorable result, and DP-degree-colorable result. We also give some structural results on critical graphs with respect to strictly $f$-degenerate transversal. Using these results, we can uniformly prove many new and known results. In the final section, we pose some open problems.
In this paper, we consider permutation manipulations by any subset of women in the men-proposing version of the Gale-Shapley algorithm. This paper is motivated by the college admissions process in China. Our results also answer an open problem on what can be achieved by permutation manipulations. We present an efficient algorithm to find a strategy profile such that the induced matching is stable and Pareto-optimal (in the set of all achievable stable matchings) while the strategy profile itself is inconspicuous. Surprisingly, we show that such a strategy profile actually forms a Nash equilibrium of the manipulation game. In the end, we show that it is NP-complete to find a manipulation that is strictly better for all members of the coalition. This result demonstrates a sharp contrast between weakly better off outcomes and strictly better-off outcomes.
We study the greedy-based online algorithm for edge-weighted matching with (one-sided) vertex arrivals in bipartite graphs, and edge arrivals in general graphs. This algorithm was first studied more than a decade ago by Korula and P\'al for the bipartite case in the random-order model. While the weighted bipartite matching problem is solved in the random-order model, this is not the case in recent and exciting online models in which the online player is provided with a sample, and the arrival order is adversarial. The greedy-based algorithm is arguably the most natural and practical algorithm to be applied in these models. Despite its simplicity and appeal, and despite being studied in multiple works, the greedy-based algorithm was not fully understood in any of the studied online models, and its actual performance remained an open question for more than a decade. We provide a thorough analysis of the greedy-based algorithm in several online models. For vertex arrivals in bipartite graphs, we characterize the exact competitive-ratio of this algorithm in the random-order model, for any arrival order of the vertices subsequent to the sampling phase (adversarial and random orders in particular). We use it to derive tight analysis in the recent adversarial-order model with a sample (AOS model) for any sample size, providing the first result in this model beyond the simple secretary problem. Then, we generalize and strengthen the black box method of converting results in the random-order model to single-sample prophet inequalities, and use it to derive the state-of-the-art single-sample prophet inequality for the problem. Finally, we use our new techniques to analyze the greedy-based algorithm for edge arrivals in general graphs and derive results in all the mentioned online models. In this case as well, we improve upon the state-of-the-art single-sample prophet inequality.
Extending computational harmonic analysis tools from the classical setting of regular lattices to the more general setting of graphs and networks is very important and much research has been done recently. The Generalized Haar-Walsh Transform (GHWT) developed by Irion and Saito (2014) is a multiscale transform for signals on graphs, which is a generalization of the classical Haar and Walsh-Hadamard Transforms. We propose the extended Generalized Haar-Walsh Transform (eGHWT), which is a generalization of the adapted time-frequency tilings of Thiele and Villemoes (1996). The eGHWT examines not only the efficiency of graph-domain partitions but also that of "sequency-domain" partitions simultaneously. Consequently, the eGHWT and its associated best-basis selection algorithm for graph signals significantly improve the performance of the previous GHWT with the similar computational cost, $O(N \log N)$, where $N$ is the number of nodes of an input graph. While the GHWT best-basis algorithm seeks the most suitable orthonormal basis for a given task among more than $(1.5)^N$ possible orthonormal bases in $\mathbb{R}^N$, the eGHWT best-basis algorithm can find a better one by searching through more than $0.618\cdot(1.84)^N$ possible orthonormal bases in $\mathbb{R}^N$. This article describes the details of the eGHWT best-basis algorithm and demonstrates its superiority using several examples including genuine graph signals as well as conventional digital images viewed as graph signals. Furthermore, we also show how the eGHWT can be extended to 2D signals and matrix-form data by viewing them as a tensor product of graphs generated from their columns and rows and demonstrate its effectiveness on applications such as image approximation.
In recent years, several results in the supervised learning setting suggested that classical statistical learning-theoretic measures, such as VC dimension, do not adequately explain the performance of deep learning models which prompted a slew of work in the infinite-width and iteration regimes. However, there is little theoretical explanation for the success of neural networks beyond the supervised setting. In this paper we argue that, under some distributional assumptions, classical learning-theoretic measures can sufficiently explain generalization for graph neural networks in the transductive setting. In particular, we provide a rigorous analysis of the performance of neural networks in the context of transductive inference, specifically by analysing the generalisation properties of graph convolutional networks for the problem of node classification. While VC Dimension does result in trivial generalisation error bounds in this setting as well, we show that transductive Rademacher complexity can explain the generalisation properties of graph convolutional networks for stochastic block models. We further use the generalisation error bounds based on transductive Rademacher complexity to demonstrate the role of graph convolutions and network architectures in achieving smaller generalisation error and provide insights into when the graph structure can help in learning. The findings of this paper could re-new the interest in studying generalisation in neural networks in terms of learning-theoretic measures, albeit in specific problems.
The Normalized Cut (NCut) objective function, widely used in data clustering and image segmentation, quantifies the cost of graph partitioning in a way that biases clusters or segments that are balanced towards having lower values than unbalanced partitionings. However, this bias is so strong that it avoids any singleton partitions, even when vertices are very weakly connected to the rest of the graph. Motivated by the B\"uhler-Hein family of balanced cut costs, we propose the family of Compassionately Conservative Balanced (CCB) Cut costs, which are indexed by a parameter that can be used to strike a compromise between the desire to avoid too many singleton partitions and the notion that all partitions should be balanced. We show that CCB-Cut minimization can be relaxed into an orthogonally constrained $\ell_{\tau}$-minimization problem that coincides with the problem of computing Piecewise Flat Embeddings (PFE) for one particular index value, and we present an algorithm for solving the relaxed problem by iteratively minimizing a sequence of reweighted Rayleigh quotients (IRRQ). Using images from the BSDS500 database, we show that image segmentation based on CCB-Cut minimization provides better accuracy with respect to ground truth and greater variability in region size than NCut-based image segmentation.
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.