亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates an emerging cache side channel attack defense approach involving the use of hardware performance counters (HPCs). These counters monitor microarchitectural events and analyze statistical deviations to differentiate between malicious and benign software. With numerous proposals and promising reported results, we seek to investigate whether published HPC-based detection methods are evaluated in a proper setting and under the right assumptions, such that their quality can be ensured for real-word deployment against cache side-channel attacks. To achieve this goal, this paper presents a comprehensive evaluation and scrutiny of existing literature on the subject matter in a form of a survey, accompanied by experimental evidences to support our evaluation.

相關內容

This paper concerns the risk-aware control of stochastic systems with temporal logic specifications dynamically assigned during runtime. Conventional risk-aware control typically assumes that all specifications are predefined and remain unchanged during runtime. In this paper, we propose a novel, provably correct control scheme for linear systems with unbounded stochastic disturbances that dynamically evaluates the feasibility of runtime signal temporal logic specifications and automatically reschedules the control inputs. The method guarantees the probabilistic satisfaction of newly accepted runtime specifications without sacrificing the satisfaction of the previously accepted ones. The proposed control method is validated by a robotic motion planning case study. The idea of closed-loop control rescheduling with probabilistic risk guarantees provides a novel solution for runtime control synthesis of stochastic systems.

The layout of multi-dimensional data can have a significant impact on the efficacy of hardware caches and, by extension, the performance of applications. Common multi-dimensional layouts include the canonical row-major and column-major layouts as well as the Morton curve layout. In this paper, we describe how the Morton layout can be generalized to a very large family of multi-dimensional data layouts with widely varying performance characteristics. We posit that this design space can be efficiently explored using a combinatorial evolutionary methodology based on genetic algorithms. To this end, we propose a chromosomal representation for such layouts as well as a methodology for estimating the fitness of array layouts using cache simulation. We show that our fitness function correlates to kernel running time in real hardware, and that our evolutionary strategy allows us to find candidates with favorable simulated cache properties in four out of the eight real-world applications under consideration in a small number of generations. Finally, we demonstrate that the array layouts found using our evolutionary method perform well not only in simulated environments but that they can effect significant performance gains -- up to a factor ten in extreme cases -- in real hardware.

This paper considers an active reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) system. We aim to maximize radar signal-to-interference-plus-noise-ratio (SINR) by jointly optimizing the beamforming matrix at the dual-function radar-communication (DFRC) base station (BS) and the reflecting coefficients at the active RIS subject to the quality of service (QoS) constraints of communication users (UE) and the transmit power constraints of active RIS and DFRC BS. To tackle the optimization problem, the majorization-minimization (MM) algorithm is applied to address the nonconvex radar SINR objective function, and the resulting quartic problem is solved by developing an semidefinite relaxation (SDR)-based approach. Moreover, we derive the scaling order of the radar SINR with a large number of reflecting elements. Next, the transmit power allocation problem and the deployment strategy of the active RIS are studied with a moderate number of reflecting elements. Finally, we validate the potential of the active RIS in ISAC systems compared to passive RIS. Additionally, we deliberate on several open problems that remain for future research.

Supervised fairness-aware machine learning under distribution shifts is an emerging field that addresses the challenge of maintaining equitable and unbiased predictions when faced with changes in data distributions from source to target domains. In real-world applications, machine learning models are often trained on a specific dataset but deployed in environments where the data distribution may shift over time due to various factors. This shift can lead to unfair predictions, disproportionately affecting certain groups characterized by sensitive attributes, such as race and gender. In this survey, we provide a summary of various types of distribution shifts and comprehensively investigate existing methods based on these shifts, highlighting six commonly used approaches in the literature. Additionally, this survey lists publicly available datasets and evaluation metrics for empirical studies. We further explore the interconnection with related research fields, discuss the significant challenges, and identify potential directions for future studies.

DNA storage faces challenges in ensuring data reliability in the presence of edit errors -- deletions, insertions, and substitutions -- that occur randomly during various phases of the storage process. Current limitations in DNA synthesis technology also require the use of short DNA sequences, highlighting the particular need for short edit-correcting codes. Motivated by these factors, we introduce a systematic code designed to correct random edits while adhering to typical length constraints in DNA storage. We evaluate the performance of the code through simulations and assess its effectiveness within a DNA storage framework, revealing promising results.

This survey paper provides a comprehensive analysis of big data algorithms in recommendation systems, addressing the lack of depth and precision in existing literature. It proposes a two-pronged approach: a thorough analysis of current algorithms and a novel, hierarchical taxonomy for precise categorization. The taxonomy is based on a tri-level hierarchy, starting with the methodology category and narrowing down to specific techniques. Such a framework allows for a structured and comprehensive classification of algorithms, assisting researchers in understanding the interrelationships among diverse algorithms and techniques. Covering a wide range of algorithms, this taxonomy first categorizes algorithms into four main analysis types: User and Item Similarity-Based Methods, Hybrid and Combined Approaches, Deep Learning and Algorithmic Methods, and Mathematical Modeling Methods, with further subdivisions into sub-categories and techniques. The paper incorporates both empirical and experimental evaluations to differentiate between the techniques. The empirical evaluation ranks the techniques based on four criteria. The experimental assessments rank the algorithms that belong to the same category, sub-category, technique, and sub-technique. Also, the paper illuminates the future prospects of big data techniques in recommendation systems, underscoring potential advancements and opportunities for further research in this field

This paper explores the use of unstructured, multimodal data, namely text and images, in causal inference and treatment effect estimation. We propose a neural network architecture that is adapted to the double machine learning (DML) framework, specifically the partially linear model. An additional contribution of our paper is a new method to generate a semi-synthetic dataset which can be used to evaluate the performance of causal effect estimation in the presence of text and images as confounders. The proposed methods and architectures are evaluated on the semi-synthetic dataset and compared to standard approaches, highlighting the potential benefit of using text and images directly in causal studies. Our findings have implications for researchers and practitioners in economics, marketing, finance, medicine and data science in general who are interested in estimating causal quantities using non-traditional data.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司