亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pre-explored Semantic Maps, constructed through prior exploration using visual language models (VLMs), have proven effective as foundational elements for training-free robotic applications. However, existing approaches assume the map's accuracy and do not provide effective mechanisms for revising decisions based on incorrect maps. To address this, we introduce Context-Aware Replanning (CARe), which estimates map uncertainty through confidence scores and multi-view consistency, enabling the agent to revise erroneous decisions stemming from inaccurate maps without requiring additional labels. We demonstrate the effectiveness of our proposed method by integrating it with two modern mapping backbones, VLMaps and OpenMask3D, and observe significant performance improvements in object navigation tasks. More details can be found on the project page: //care-maps.github.io/

相關內容

Despite their remarkable success, large language models (LLMs) have shown limited ability on applied tasks such as vulnerability detection. We investigate various prompting strategies for vulnerability detection and, as part of this exploration, propose a prompting strategy that integrates natural language descriptions of vulnerabilities with a contrastive chain-of-thought reasoning approach, augmented using contrastive samples from a synthetic dataset. Our study highlights the potential of LLMs to detect vulnerabilities by integrating natural language descriptions, contrastive reasoning, and synthetic examples into a comprehensive prompting framework. Our results show that this approach can enhance LLM understanding of vulnerabilities. On a high-quality vulnerability detection dataset such as SVEN, our prompting strategies can improve accuracies, F1-scores, and pairwise accuracies by 23%, 11%, and 14%, respectively.

Several recent works have focused on carrying out non-asymptotic convergence analyses for AC algorithms. Recently, a two-timescale critic-actor algorithm has been presented for the discounted cost setting in the look-up table case where the timescales of the actor and the critic are reversed and only asymptotic convergence shown. In our work, we present the first two-timescale critic-actor algorithm with function approximation in the long-run average reward setting and present the first finite-time non-asymptotic as well as asymptotic convergence analysis for such a scheme. We obtain optimal learning rates and prove that our algorithm achieves a sample complexity of {$\mathcal{\tilde{O}}(\epsilon^{-(2+\delta)})$ with $\delta >0$ arbitrarily close to zero,} for the mean squared error of the critic to be upper bounded by $\epsilon$ which is better than the one obtained for two-timescale AC in a similar setting. A notable feature of our analysis is that we present the asymptotic convergence analysis of our scheme in addition to the finite-time bounds that we obtain and show the almost sure asymptotic convergence of the (slower) critic recursion to the attractor of an associated differential inclusion with actor parameters corresponding to local maxima of a perturbed average reward objective. We also show the results of numerical experiments on three benchmark settings and observe that our critic-actor algorithm performs the best amongst all algorithms.

Multimodal large language models (MLLMs) have achieved remarkable progress on various visual question answering and reasoning tasks leveraging instruction fine-tuning specific datasets. They can also learn from preference data annotated by human to enhance their reasoning ability and mitigate hallucinations. Most of preference data is generated from the model itself. However, existing methods require high-quality critical labels, which are costly and rely on human or proprietary models like GPT-4V. In this work, we propose Enhancing Alignment in MLLMs via Critical Observation (EACO), which aligns MLLMs by self-generated preference data using only 5k images economically. Our approach begins with collecting and refining a Scoring Evaluation Instruction-tuning dataset to train a critical evaluation model, termed the Critic. This Critic observes model responses across multiple dimensions, selecting preferred and non-preferred outputs for refined Direct Preference Optimization (DPO) tuning. To further enhance model performance, we employ an additional supervised fine-tuning stage after preference tuning. EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition. EACO achieves an 8.5% improvement over LLaVA-v1.6-Mistral-7B across multiple benchmarks. Remarkably, EACO also shows the potential critical ability in open-source MLLMs, demonstrating that EACO is a viable path to boost the competence of MLLMs.

Open-ended coding tasks, which ask students to construct programs according to certain specifications, are common in computer science education. Student modeling can be challenging since their open-ended nature means that student code can be diverse. Traditional knowledge tracing (KT) models that only analyze response correctness may not fully capture nuances in student knowledge from student code. In this paper, we introduce Test case-Informed Knowledge Tracing for Open-ended Coding (TIKTOC), a framework to simultaneously analyze and predict both open-ended student code and whether the code passes each test case. We augment the existing CodeWorkout dataset with the test cases used for a subset of the open-ended coding questions, and propose a multi-task learning KT method to simultaneously analyze and predict 1) whether a student's code submission passes each test case and 2) the student's open-ended code, using a large language model as the backbone. We quantitatively show that these methods outperform existing KT methods for coding that only use the overall score a code submission receives. We also qualitatively demonstrate how test case information, combined with open-ended code, helps us gain fine-grained insights into student knowledge.

Large Language Models (LLMs) have demonstrated efficacy in various linguistic applications, including question answering and controlled text generation. However, studies into their ability to switch between opposite styles of responses in professional domains remain underexplored. This study introduces a novel approach, named ProSwitch, which enables a language model to switch between professional and non-professional answers, by tuning and evaluating through the guidance of domain and style knowledge. ProSwitch unfolds in three phases: LLM-augmented preparation to collect domain knowledge and QA pairs, instruction tuning to optimize LLMs with multiple levels of knowledge, and comprehensive evaluation to assess both style discrimination and reference-based quality of the generated text. Comparative analysis of ProSwitch against general and specialized LLMs reveals that our approach outperforms baselines in switching between professional and non-professional responses.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

北京阿比特科技有限公司