In this study, we explore the influence of different observation spaces on robot learning, focusing on three predominant modalities: RGB, RGB-D, and point cloud. Through extensive experimentation on over 17 varied contact-rich manipulation tasks, conducted across two benchmarks and simulators, we have observed a notable trend: point cloud-based methods, even those with the simplest designs, frequently surpass their RGB and RGB-D counterparts in performance. This remains consistent in both scenarios: training from scratch and utilizing pretraining. Furthermore, our findings indicate that point cloud observations lead to improved policy zero-shot generalization in relation to various geometry and visual clues, including camera viewpoints, lighting conditions, noise levels and background appearance. The outcomes suggest that 3D point cloud is a valuable observation modality for intricate robotic tasks. We will open-source all our codes and checkpoints, hoping that our insights can help design more generalizable and robust robotic models.
In this work we investigate an inverse coefficient problem for the one-dimensional subdiffusion model, which involves a Caputo fractional derivative in time. The inverse problem is to determine two coefficients and multiple parameters (the order, and length of the interval) from one pair of lateral Cauchy data. The lateral Cauchy data are given on disjoint sets in time with a single excitation and the measurement is made on a time sequence located outside the support of the excitation. We prove two uniqueness results for different lateral Cauchy data. The analysis is based on the solution representation, analyticity of the observation and a refined version of inverse Sturm-Liouville theory due to Sini [35]. Our results heavily exploit the memory effect of fractional diffusion for the unique recovery of the coefficients in the model. Several numerical experiments are also presented to complement the analysis.
In this paper, we discuss the development of an annotation schema to build datasets for evaluating the offline harm potential of social media texts. We define "harm potential" as the potential for an online public post to cause real-world physical harm (i.e., violence). Understanding that real-world violence is often spurred by a web of triggers, often combining several online tactics and pre-existing intersectional fissures in the social milieu, to result in targeted physical violence, we do not focus on any single divisive aspect (i.e., caste, gender, religion, or other identities of the victim and perpetrators) nor do we focus on just hate speech or mis/dis-information. Rather, our understanding of the intersectional causes of such triggers focuses our attempt at measuring the harm potential of online content, irrespective of whether it is hateful or not. In this paper, we discuss the development of a framework/annotation schema that allows annotating the data with different aspects of the text including its socio-political grounding and intent of the speaker (as expressed through mood and modality) that together contribute to it being a trigger for offline harm. We also give a comparative analysis and mapping of our framework with some of the existing frameworks.
In this work, we study the out-of-distribution (OOD) detection problem through the use of the feature space of a pre-trained deep classifier. We show that learning the density of in-distribution (ID) features with an energy-based models (EBM) leads to competitive detection results. However, we found that the non-mixing of MCMC sampling during the EBM's training undermines its detection performance. To overcome this an energy-based correction of a mixture of class-conditional Gaussian distributions. We obtains favorable results when compared to a strong baseline like the KNN detector on the CIFAR-10/CIFAR-100 OOD detection benchmarks.
In this work, we consider the problem of localizing multiple signal sources based on time-difference of arrival (TDOA) measurements. In the blind setting, in which the source signals are not known, the localization task is challenging due to the data association problem. That is, it is not known which of the TDOA measurements correspond to the same source. Herein, we propose to perform joint localization and data association by means of an optimal transport formulation. The method operates by finding optimal groupings of TDOA measurements and associating these with candidate source locations. To allow for computationally feasible localization in three-dimensional space, an efficient set of candidate locations is constructed using a minimal multilateration solver based on minimal sets of receiver pairs. In numerical simulations, we demonstrate that the proposed method is robust both to measurement noise and TDOA detection errors. Furthermore, it is shown that the data association provided by the proposed method allows for statistically efficient estimates of the source locations.
We study gradient flow on the exponential loss for a classification problem with a one-layer softmax attention model, where the key and query weight matrices are trained separately. Under a separability assumption on the data, we show that when gradient flow achieves the minimal loss value, it further implicitly minimizes the nuclear norm of the product of the key and query weight matrices. Such implicit regularization can be described by a Support Vector Machine (SVM) problem with respect to the attention weights. This finding contrasts with prior results showing that the gradient descent induces an implicit regularization on the Frobenius norm on the product weight matrix when the key and query matrices are combined into a single weight matrix for training. For diagonal key and query matrices, our analysis builds upon the reparameterization technique and exploits approximate KKT conditions of the SVM associated with the classification data. Moreover, the results are extended to general weights configurations given proper alignment of the weight matrices' singular spaces with the data features at initialization.
In this work, we investigate the potential of large language models (LLMs) based agents to automate data science tasks, with the goal of comprehending task requirements, then building and training the best-fit machine learning models. Despite their widespread success, existing LLM agents are hindered by generating unreasonable experiment plans within this scenario. To this end, we present DS-Agent, a novel automatic framework that harnesses LLM agent and case-based reasoning (CBR). In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle, and facilitate consistent performance improvement through the feedback mechanism. Moreover, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm to adapt past successful solutions from the development stage for direct code generation, significantly reducing the demand on foundational capabilities of LLMs. Empirically, DS-Agent with GPT-4 achieves an unprecedented 100% success rate in the development stage, while attaining 36% improvement on average one pass rate across alternative LLMs in the deployment stage. In both stages, DS-Agent achieves the best rank in performance, costing \$1.60 and \$0.13 per run with GPT-4, respectively. Our code is open-sourced at //github.com/guosyjlu/DS-Agent.
In the past decade, we have witnessed the rise of deep learning to dominate the field of artificial intelligence. Advances in artificial neural networks alongside corresponding advances in hardware accelerators with large memory capacity, together with the availability of large datasets enabled researchers and practitioners alike to train and deploy sophisticated neural network models that achieve state-of-the-art performance on tasks across several fields spanning computer vision, natural language processing, and reinforcement learning. However, as these neural networks become bigger, more complex, and more widely used, fundamental problems with current deep learning models become more apparent. State-of-the-art deep learning models are known to suffer from issues that range from poor robustness, inability to adapt to novel task settings, to requiring rigid and inflexible configuration assumptions. Ideas from collective intelligence, in particular concepts from complex systems such as self-organization, emergent behavior, swarm optimization, and cellular systems tend to produce solutions that are robust, adaptable, and have less rigid assumptions about the environment configuration. It is therefore natural to see these ideas incorporated into newer deep learning methods. In this review, we will provide a historical context of neural network research's involvement with complex systems, and highlight several active areas in modern deep learning research that incorporate the principles of collective intelligence to advance its current capabilities. To facilitate a bi-directional flow of ideas, we also discuss work that utilize modern deep learning models to help advance complex systems research. We hope this review can serve as a bridge between complex systems and deep learning communities to facilitate the cross pollination of ideas and foster new collaborations across disciplines.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.