亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $(X, d)$ be a metric space and $C \subseteq 2^X$ -- a collection of special objects. In the $(X,d,C)$-chasing problem, an online player receives a sequence of online requests $\{B_t\}_{t=1}^T \subseteq C$ and responds with a trajectory $\{x_t\}_{t=1}^T$ such that $x_t \in B_t$. This response incurs a movement cost $\sum_{t=1}^T d(x_t, x_{t-1})$, and the online player strives to minimize the competitive ratio -- the worst case ratio over all input sequences between the online movement cost and the optimal movement cost in hindsight. Under this setup, we call the $(X,d,C)$-chasing problem $\textit{chaseable}$ if there exists an online algorithm with finite competitive ratio. In the case of Convex Body Chasing (CBC) over real normed vector spaces, (Bubeck et al. 2019) proved the chaseability of the problem. Furthermore, in the vector space setting, the dimension of the ambient space appears to be the factor controlling the size of the competitive ratio. Indeed, recently, (Sellke 2020) provided a $d-$competitive online algorithm over arbitrary real normed vector spaces $(\mathbb{R}^d, ||\cdot||)$, and we will shortly present a general strategy for obtaining novel lower bounds of the form $\Omega(d^c), \enspace c > 0$, for CBC in the same setting. In this paper, we also prove that the $\textit{doubling}$ and $\textit{Assouad}$ dimensions of a metric space exert no control on the hardness of ball chasing over the said metric space. More specifically, we show that for any large enough $\rho \in \mathbb{R}$, there exists a metric space $(X,d)$ of doubling dimension $\Theta(\rho)$ and Assouad dimension $\rho$ such that no online selector can achieve a finite competitive ratio in the general ball chasing regime.

相關內容

Let $\Gamma$ be a finite set of Jordan curves in the plane. For any curve $\gamma \in \Gamma$, we denote the bounded region enclosed by $\gamma$ as $\tilde{\gamma}$. We say that $\Gamma$ is a non-piercing family if for any two curves $\alpha , \beta \in \Gamma$, $\tilde{\alpha} \setminus \tilde{\beta}$ is a connected region. A non-piercing family of curves generalizes a family of $2$-intersecting curves in which each pair of curves intersect in at most two points. Snoeyink and Hershberger (``Sweeping Arrangements of Curves'', SoCG '89) proved that if we are given a family $\mathcal{C}$ of $2$-intersecting curves and a fixed curve $C\in\mathcal{C}$, then the arrangement can be \emph{swept} by $C$, i.e., $C$ can be continuously shrunk to any point $p \in \tilde{C}$ in such a way that the we have a family of $2$-intersecting curves throughout the process. In this paper, we generalize the result of Snoeyink and Hershberger to the setting of non-piercing curves. We show that given an arrangement of non-piercing curves $\Gamma$, and a fixed curve $\gamma\in \Gamma$, the arrangement can be swept by $\gamma$ so that the arrangement remains non-piercing throughout the process. We also give a shorter and simpler proof of the result of Snoeyink and Hershberger and cite applications of their result, where our result leads to a generalization.

Given the Fourier-Legendre expansions of $f$ and $g$, and mild conditions on $f$ and $g$, we derive the Fourier-Legendre expansion of their product in terms of their corresponding Fourier-Legendre coefficients. In this way, expansions of whole number powers of $f$ may be obtained. We establish upper bounds on rates of convergence. We then employ these expansions to solve semi-analytically a class of nonlinear PDEs with a polynomial nonlinearity of degree 2. The obtained numerical results illustrate the efficiency and performance accuracy of this Fourier-Legendre based solution methodology for solving an important class of nonlinear PDEs.

Let $\alpha$ and $\beta$ belong to the same quadratic field. We show that the inhomogeneous Beatty sequence $(\lfloor n \alpha + \beta \rfloor)_{n \geq 1}$ is synchronized, in the sense that there is a finite automaton that takes as input the Ostrowski representations of $n$ and $y$ in parallel, and accepts if and only if $y = \lfloor n \alpha + \beta \rfloor$. Since it is already known that the addition relation is computable for Ostrowski representations based on a quadratic number, a consequence is a new and rather simple proof that the first-order logical theory of these sequences with addition is decidable. The decision procedure is easily implemented in the free software Walnut. As an application, we show that for each $r \geq 1$ it is decidable whether the set $\{ \lfloor n \alpha + \beta \rfloor \, : \, n \geq 1 \}$ forms an additive basis (or asymptotic additive basis) of order $r$. Using our techniques, we also solve some open problems of Reble and Kimberling, and give an explicit characterization of a sequence of Hildebrand et al.

The question of characterizing the (finite) representable relation algebras in a ``nice" way is open. The class $\mathbf{RRA}$ is known to be not finitely axiomatizable in first-order logic. Nevertheless, it is conjectured that ``almost all'' finite relation algebras are representable. All finite relation algebras with three or fewer atoms are representable. So one may ask, Over what cardinalities of sets are they representable? This question was answered completely by Andr\'eka and Maddux (``Representations for small relation algebras,'' \emph{Notre Dame J. Form. Log.}, \textbf{35} (1994)); they determine the spectrum of every finite relation algebra with three or fewer atoms. In the present paper, we restrict attention to cyclic group representations, and completely determine the cyclic group spectrum for all seven symmetric integral relation algebras on three atoms. We find that in some instances, the spectrum and cyclic spectrum agree; in other instances, the spectra disagree for finitely many $n$; finally, for other instances, the spectra disagree for infinitely many $n$. The proofs employ constructions, SAT solvers, and the probabilistic method.

Given a simple $n$-vertex, $m$-edge graph $G$ undergoing edge insertions and deletions, we give two new fully dynamic algorithms for exactly maintaining the edge connectivity of $G$ in $\tilde{O}(n)$ worst-case update time and $\tilde{O}(m^{1-1/31})$ amortized update time, respectively. Prior to our work, all dynamic edge connectivity algorithms either assumed bounded edge connectivity, guaranteed approximate solutions, or were restricted to edge insertions only. Our results provide an affirmative answer to an open question posed by Thorup [Combinatorica'07].

We study finding and listing $k$-cliques in a graph, for constant $k\geq 3$, a fundamental problem of both theoretical and practical importance. Our main contribution is a new output-sensitive algorithm for listing $k$-cliques in graphs, for arbitrary $k\geq 3$, coupled with lower bounds based on standard fine-grained assumptions, showing that our algorithm's running time is tight. Previously, the only known conditionally optimal output-sensitive algorithms were for the case of $3$-cliques by Bj\"{o}rklund, Pagh, Vassilevska W. and Zwick [ICALP'14]. Typical inputs to subgraph isomorphism or listing problems are measured by the number of nodes $n$ or the number of edges $m$. Our framework is very general in that it gives $k$-clique listing algorithms whose running times are measured in terms of the number of $\ell$-cliques $\Delta_\ell$ in the graph for any $1\leq \ell<k$. This generalizes the typical parameterization in terms of $n$ (the number of $1$-cliques) and $m$ (the number of $2$-cliques). If the matrix multiplication exponent $\omega$ is $2$, and if the size of the output, $\Delta_k$, is sufficiently large, then for every $\ell<k$, the running time of our algorithm for listing $k$-cliques is $$\tilde{O}\left(\Delta_\ell^{\frac{2}{\ell (k - \ell)}}\Delta_k^{1-\frac{2}{k(k-\ell)}}\right).$$ For sufficiently large $\Delta_k$, we prove that this runtime is in fact {\em optimal} for all $1 \leq \ell < k$ under the Exact $k$-Clique hypothesis. In the special cases of $k = 4$ and $5$, our algorithm in terms of $n$ is conditionally optimal for all values of $\Delta_k$ if $\omega = 2$. Moreover, our framework is powerful enough to provide an improvement upon the 19-year old runtimes for $4$ and $5$-clique detection in $m$-edge graphs, as a function of $m$ [Eisenbrand and Grandoni, TCS'04].

A graph $G$ is well-covered if all maximal independent sets are of the same cardinality. Let $w:V(G) \longrightarrow\mathbb{R}$ be a weight function. Then $G$ is $w$-well-covered if all maximal independent sets are of the same weight. An edge $xy \in E(G)$ is relating if there exists an independent set $S$ such that both $S \cup \{x\}$ and $S \cup \{y\}$ are maximal independent sets in the graph. If $xy$ is relating then $w(x)=w(y)$ for every weight function $w$ such that $G$ is $w$-well-covered. Relating edges play an important role in investigating $w$-well-covered graphs. The decision problem whether an edge in a graph is relating is NP-complete. We prove that the problem remains NP-complete when the input is restricted to graphs without cycles of length $6$. This is an unexpected result because recognizing relating edges is known to be polynomially solvable for graphs without cycles of lengths $4$ and $6$, graphs without cycles of lengths $5$ and $6$, and graphs without cycles of lengths $6$ and $7$. A graph $G$ belongs to the class $W_2$ if every two pairwise disjoint independent sets in $G$ are included in two pairwise disjoint maximum independent sets. It is known that if $G$ belongs to the class $W_2$, then it is well-covered. A vertex $v \in V(G)$ is shedding if for every independent set $S \subseteq V(G)-N[v]$, there exists a vertex $u \in N(v)$ such that $S \cup \{u\}$ is independent. Shedding vertices play an important role in studying the class $W_2$. Recognizing shedding vertices is co-NP-complete, even when the input is restricted to triangle-free graphs. We prove that the problem is co-NP-complete for graphs without cycles of length $6$.

For a locally finite set, $A \subseteq \mathbb{R}^d$, the $k$-th Brillouin zone of $a \in A$ is the region of points $x \in \mathbb{R}^d$ for which $\|x-a\|$ is the $k$-th smallest among the Euclidean distances between $x$ and the points in $A$. If $A$ is a lattice, the $k$-th Brillouin zones of the points in $A$ are translates of each other, which tile space. Depending on the value of $k$, they express medium- or long-range order in the set. We study fundamental geometric and combinatorial properties of Brillouin zones, focusing on the integer lattice and its perturbations. Our results include the stability of a Brillouin zone under perturbations, a linear upper bound on the number of chambers in a zone for lattices in $\mathbb{R}^2$, and the convergence of the maximum volume of a chamber to zero for the integer lattice.

The maximum coverage problem is to select $k$ sets from a collection of sets such that the cardinality of the union of the selected sets is maximized. We consider $(1-1/e-\epsilon)$-approximation algorithms for this NP-hard problem in three standard data stream models. 1. {\em Dynamic Model.} The stream consists of a sequence of sets being inserted and deleted. Our multi-pass algorithm uses $\epsilon^{-2} k \cdot \text{polylog}(n,m)$ space. The best previous result (Assadi and Khanna, SODA 2018) used $(n +\epsilon^{-4} k) \text{polylog}(n,m)$ space. While both algorithms use $O(\epsilon^{-1} \log n)$ passes, our analysis shows that when $\epsilon$ is a constant, it is possible to reduce the number of passes by a $1/\log \log n$ factor without incurring additional space. 2. {\em Random Order Model.} In this model, there are no deletions and the sets forming the instance are uniformly randomly permuted to form the input stream. We show that a single pass and $k \text{polylog}(n,m)$ space suffices for arbitrary small constant $\epsilon$. The best previous result, by Warneke et al.~(ESA 2023), used $k^2 \text{polylog}(n,m)$ space. 3. {\em Insert-Only Model.} Lastly, our results, along with numerous previous results, use a sub-sampling technique introduced by McGregor and Vu (ICDT 2017) to sparsify the input instance. We explain how this technique and others used in the paper can be implemented such that the amortized update time of our algorithm is polylogarithmic. This also implies an improvement of the state-of-the-art insert only algorithms in terms of the update time: $\text{polylog}(m,n)$ update time suffices whereas the best previous result by Jaud et al.~(SEA 2023) required update time that was linear in $k$.

Given a real inner product space $V$ and a group $G$ of linear isometries, we construct a family of $G$-invariant real-valued functions on $V$ that we call coorbit filter banks, which unify previous notions of max filter banks and finite coorbit filter banks. When $V=\mathbb R^d$ and $G$ is compact, we establish that a suitable coorbit filter bank is injective and locally lower Lipschitz in the quotient metric at orbits of maximal dimension. Furthermore, when the orbit space $\mathbb S^{d-1}/G$ is a Riemannian orbifold, we show that a suitable coorbit filter bank is bi-Lipschitz in the quotient metric.

北京阿比特科技有限公司