Static stability in economic models means negative incentives for deviation from equilibrium strategies, which we expect to assure a return to equilibrium, i.e., dynamic stability, as long as agents respond to incentives. There have been many attempts to prove this link, especially in evolutionary game theory, yielding both negative and positive results. This paper presents a universal and intuitive approach to this link. We prove that static stability assures dynamic stability if agents' choices of switching strategies are rationalizable by introducing costs and constraints in those switching decisions. This idea guides us to define \textit{net }gains from switches as the payoff improvement after deducting the costs. Under rationalizable dynamics, an agent maximizes the expected net gain subject to the constraints. We prove that the aggregate maximized expected net gain works as a Lyapunov function. It also explains reasons behind the known negative results. While our analysis here is confined to myopic evolutionary dynamics in population games, our approach is applicable to more complex situations.
Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.
We construct explicit easily implementable polynomial approximations of sufficiently high accuracy for locally constant functions on the union of disjoint segments. This problem has important applications in several areas of numerical analysis, complexity theory, quantum algorithms, etc. The one, most relevant for us, is the amplification of approximation method: it allows to construct approximations of higher degree $M$ and better accuracy from the approximations of degree $m$.
Aberrant respondents are common but yet extremely detrimental to the quality of social surveys or questionnaires. Recently, factor mixture models have been employed to identify individuals providing deceptive or careless responses. We propose a comprehensive factor mixture model that combines confirmatory and exploratory factor models to represent both the non-aberrant and aberrant components of the responses. The flexibility of the proposed solution allows for the identification of two of the most common aberant response styles, namely faking and careless responding. We validated our approach by means of two simulations and two case studies. The results indicate the effectiveness of the proposed model in handling with aberrant responses in social and behavioral surveys.
The ultimate goal of any numerical scheme for partial differential equations (PDEs) is to compute an approximation of user-prescribed accuracy at quasi-minimal computational time. To this end, algorithmically, the standard adaptive finite element method (AFEM) integrates an inexact solver and nested iterations with discerning stopping criteria balancing the different error components. The analysis ensuring optimal convergence order of AFEM with respect to the overall computational cost critically hinges on the concept of R-linear convergence of a suitable quasi-error quantity. This work tackles several shortcomings of previous approaches by introducing a new proof strategy. First, the algorithm requires several fine-tuned parameters in order to make the underlying analysis work. A redesign of the standard line of reasoning and the introduction of a summability criterion for R-linear convergence allows us to remove restrictions on those parameters. Second, the usual assumption of a (quasi-)Pythagorean identity is replaced by the generalized notion of quasi-orthogonality from [Feischl, Math. Comp., 91 (2022)]. Importantly, this paves the way towards extending the analysis to general inf-sup stable problems beyond the energy minimization setting. Numerical experiments investigate the choice of the adaptivity parameters.
Sequential neural posterior estimation (SNPE) techniques have been recently proposed for dealing with simulation-based models with intractable likelihoods. Unlike approximate Bayesian computation, SNPE techniques learn the posterior from sequential simulation using neural network-based conditional density estimators by minimizing a specific loss function. The SNPE method proposed by Lueckmann et al. (2017) used a calibration kernel to boost the sample weights around the observed data, resulting in a concentrated loss function. However, the use of calibration kernels may increase the variances of both the empirical loss and its gradient, making the training inefficient. To improve the stability of SNPE, this paper proposes to use an adaptive calibration kernel and several variance reduction techniques. The proposed method greatly speeds up the process of training, and provides a better approximation of the posterior than the original SNPE method and some existing competitors as confirmed by numerical experiments.
We construct an efficient class of increasingly high-order (up to 17th-order) essentially non-oscillatory schemes with multi-resolution (ENO-MR) for solving hyperbolic conservation laws. The candidate stencils for constructing ENO-MR schemes range from first-order one-point stencil increasingly up to the designed very high-order stencil. The proposed ENO-MR schemes adopt a very simple and efficient strategy that only requires the computation of the highest-order derivatives of a part of candidate stencils. Besides simplicity and high efficiency, ENO-MR schemes are completely parameter-free and essentially scale-invariant. Theoretical analysis and numerical computations show that ENO-MR schemes achieve designed high-order convergence in smooth regions which may contain high-order critical points (local extrema) and retain ENO property for strong shocks. In addition, ENO-MR schemes could capture complex flow structures very well.
For the iterative decoupling of elliptic-parabolic problems such as poroelasticity, we introduce time discretization schemes up to order $5$ based on the backward differentiation formulae. Its analysis combines techniques known from fixed-point iterations with the convergence analysis of the temporal discretization. As the main result, we show that the convergence depends on the interplay between the time step size and the parameters for the contraction of the iterative scheme. Moreover, this connection is quantified explicitly, which allows for balancing the single error components. Several numerical experiments illustrate and validate the theoretical results, including a three-dimensional example from biomechanics.
Neural operators have been explored as surrogate models for simulating physical systems to overcome the limitations of traditional partial differential equation (PDE) solvers. However, most existing operator learning methods assume that the data originate from a single physical mechanism, limiting their applicability and performance in more realistic scenarios. To this end, we propose Physical Invariant Attention Neural Operator (PIANO) to decipher and integrate the physical invariants (PI) for operator learning from the PDE series with various physical mechanisms. PIANO employs self-supervised learning to extract physical knowledge and attention mechanisms to integrate them into dynamic convolutional layers. Compared to existing techniques, PIANO can reduce the relative error by 13.6\%-82.2\% on PDE forecasting tasks across varying coefficients, forces, or boundary conditions. Additionally, varied downstream tasks reveal that the PI embeddings deciphered by PIANO align well with the underlying invariants in the PDE systems, verifying the physical significance of PIANO. The source code will be publicly available at: //github.com/optray/PIANO.
The main reason for query model's prominence in complexity theory and quantum computing is the presence of concrete lower bounding techniques: polynomial and adversary method. There have been considerable efforts to give lower bounds using these methods, and to compare/relate them with other measures based on the decision tree. We explore the value of these lower bounds on quantum query complexity and their relation with other decision tree based complexity measures for the class of symmetric functions, arguably one of the most natural and basic sets of Boolean functions. We show an explicit construction for the dual of the positive adversary method and also of the square root of private coin certificate game complexity for any total symmetric function. This shows that the two values can't be distinguished for any symmetric function. Additionally, we show that the recently introduced measure of spectral sensitivity gives the same value as both positive adversary and approximate degree for every total symmetric Boolean function. Further, we look at the quantum query complexity of Gap Majority, a partial symmetric function. It has gained importance recently in regard to understanding the composition of randomized query complexity. We characterize the quantum query complexity of Gap Majority and show a lower bound on noisy randomized query complexity (Ben-David and Blais, FOCS 2020) in terms of quantum query complexity. Finally, we study how large certificate complexity and block sensitivity can be as compared to sensitivity for symmetric functions (even up to constant factors). We show tight separations, i.e., give upper bounds on possible separations and construct functions achieving the same.
We propose and compare methods for the analysis of extreme events in complex systems governed by PDEs that involve random parameters, in situations where we are interested in quantifying the probability that a scalar function of the system's solution is above a threshold. If the threshold is large, this probability is small and its accurate estimation is challenging. To tackle this difficulty, we blend theoretical results from large deviation theory (LDT) with numerical tools from PDE-constrained optimization. Our methods first compute parameters that minimize the LDT-rate function over the set of parameters leading to extreme events, using adjoint methods to compute the gradient of this rate function. The minimizers give information about the mechanism of the extreme events as well as estimates of their probability. We then propose a series of methods to refine these estimates, either via importance sampling or geometric approximation of the extreme event sets. Results are formulated for general parameter distributions and detailed expressions are provided when Gaussian distributions. We give theoretical and numerical arguments showing that the performance of our methods is insensitive to the extremeness of the events we are interested in. We illustrate the application of our approach to quantify the probability of extreme tsunami events on shore. Tsunamis are typically caused by a sudden, unpredictable change of the ocean floor elevation during an earthquake. We model this change as a random process, which takes into account the underlying physics. We use the one-dimensional shallow water equation to model tsunamis numerically. In the context of this example, we present a comparison of our methods for extreme event probability estimation, and find which type of ocean floor elevation change leads to the largest tsunamis on shore.