亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fully implicit Runge-Kutta (IRK) methods have many desirable properties as time integration schemes in terms of accuracy and stability, but high-order IRK methods are not commonly used in practice with numerical PDEs due to the difficulty of solving the stage equations. This paper introduces a theoretical and algorithmic preconditioning framework for solving the systems of equations that arise from IRK methods applied to linear numerical PDEs (without algebraic constraints). This framework also naturally applies to discontinuous Galerkin discretizations in time. Under quite general assumptions on the spatial discretization that yield stable time integration, the preconditioned operator is proven to have condition number bounded by a small, order-one constant, independent of the spatial mesh and time-step size, and with only weak dependence on number of stages/polynomial order; for example, the preconditioned operator for 10th-order Gauss IRK has condition number less than two, independent of the spatial discretization and time step. The new method can be used with arbitrary existing preconditioners for backward Euler-type time stepping schemes, and is amenable to the use of three-term recursion Krylov methods when the underlying spatial discretization is symmetric. The new method is demonstrated to be effective on various high-order finite-difference and finite-element discretizations of linear parabolic and hyperbolic problems, demonstrating fast, scalable solution of up to 10th order accuracy. The new method consistently outperforms existing block preconditioning approaches, and in several cases, the new method can achieve 4th-order accuracy using Gauss integration with roughly half the number of preconditioner applications and wallclock time as required using standard diagonally implicit RK methods.

相關內容

In this paper we study the finite element approximation of systems of second-order nonlinear hyperbolic equations. The proposed numerical method combines a $hp$-version discontinuous Galerkin finite element approximation in the time direction with an $H^1(\Omega)$-conforming finite element approximation in the spatial variables. Error bounds at the temporal nodal points are derived under a weak restriction on the temporal step size in terms of the spatial mesh size. Numerical experiments are presented to verify the theoretical results.

The Sinc-Nystr\"{o}m method is a high-order numerical method based on Sinc basis functions for discretizing evolutionary differential equations in time. But in this method we have to solve all the time steps in one-shot (i.e. all-at-once), which results in a large-scale nonsymmetric dense system that is expensive to handle. In this paper, we propose and analyze preconditioner for such dense system arising from both the parabolic and hyperbolic PDEs. The proposed preconditioner is a low-rank perturbation of the original matrix and has two advantages. First, we show that the eigenvalues of the preconditioned system are highly clustered with some uniform bounds which are independent of the mesh parameters. Second, the preconditioner can be used parallel for all the Sinc time points via a block diagonalization procedure. Such a parallel potential owes to the fact that the eigenvector matrix of the diagonalization is well conditioned. In particular, we show that the condition number of the eigenvector matrix only mildly grows as the number of Sinc time points increases, and thus the roundoff error arising from the diagonalization procedure is controllable. The effectiveness of our proposed PinT preconditioners is verified by the observed mesh-independent convergence rates of the preconditioned GMRES in reported numerical examples.

We consider a generic and explicit tamed Euler--Maruyama scheme for multidimensional time-inhomogeneous stochastic differential equations with multiplicative Brownian noise. The diffusion coefficient is uniformly elliptic, H\"older continuous and weakly differentiable in the spatial variables while the drift satisfies the Ladyzhenskaya--Prodi--Serrin condition, as considered by Krylov and R\"ockner (2005). In the discrete scheme, the drift is tamed by replacing it by an approximation. A strong rate of convergence of the scheme is provided in terms of the approximation error of the drift in a suitable and possibly very weak topology. A few examples of approximating drifts are discussed in detail. The parameters of the approximating drifts can vary and be fine-tuned to achieve the standard $1/2$-strong convergence rate with a logarithmic factor.

We study a class of algorithms for solving bilevel optimization problems in both stochastic and deterministic settings when the inner-level objective is strongly convex. Specifically, we consider algorithms based on inexact implicit differentiation and we exploit a warm-start strategy to amortize the estimation of the exact gradient. We then introduce a unified theoretical framework inspired by the study of singularly perturbed systems (Habets, 1974) to analyze such amortized algorithms. By using this framework, our analysis shows these algorithms to match the computational complexity of oracle methods that have access to an unbiased estimate of the gradient, thus outperforming many existing results for bilevel optimization. We illustrate these findings on synthetic experiments and demonstrate the efficiency of these algorithms on hyper-parameter optimization experiments involving several thousands of variables.

We present a numerical stability analysis of the immersed boundary(IB) method for a special case which is constructed so that Fourier analysis is applicable. We examine the stability of the immersed boundary method with the discrete Fourier transforms defined differently on the fluid grid and the boundary grid. This approach gives accurate theoretical results about the stability boundary since it takes the effects of the spreading kernel of the immersed boundary method on the numerical stability into account. In this paper, the spreading kernel is the standard 4-point IB delta function. A three-dimensional incompressible viscous flow and a no-slip planar boundary are considered. The case of a planar elastic membrane is also analyzed using the same analysis framework and it serves as an example of many possible generalizations of our theory. We present some numerical results and show that the observed stability behaviors are consistent with what are predicted by our theory.

Two types of second-order in time partial differential equations (PDEs), namely semilinear wave equations and semilinear beam equations are considered. To solve these equations with exponential integrators, we present an approach to compute efficiently the action of the matrix exponential as well as those of related matrix functions. Various numerical simulations are presented that illustrate this approach.

The aim of this paper is to apply a high-order discontinuous-in-time scheme to second-order hyperbolic partial differential equations (PDEs). We first discretize the PDEs in time while keeping the spatial differential operators undiscretized. The well-posedness of this semi-discrete scheme is analyzed and a priori error estimates are derived in the energy norm. We then combine this $hp$-version discontinuous Galerkin method for temporal discretization with an $H^1$-conforming finite element approximation for the spatial variables to construct a fully discrete scheme. A prior error estimates are derived both in the energy norm and the $L^2$-norm. Numerical experiments are presented to verify the theoretical results.

We propose and analyze volume-preserving parametric finite element methods for surface diffusion, conserved mean curvature flow and an intermediate evolution law in an axisymmetric setting. The weak formulations are presented in terms of the generating curves of the axisymmetric surfaces. The proposed numerical methods are based on piecewise linear parametric finite elements. The constructed fully practical schemes satisfy the conservation of the enclosed volume. In addition, we prove the unconditional stability and consider the distribution of vertices for the discretized schemes. The introduced methods are implicit and the resulting nonlinear systems of equations can be solved very efficiently and accurately via the Newton's iterative method. Numerical results are presented to show the accuracy and efficiency of the introduced schemes for computing the considered axisymmetric geometric flows.

We develop a rapid and accurate contour method for the solution of time-fractional PDEs. The method inverts the Laplace transform via an optimised stable quadrature rule, suitable for infinite-dimensional operators, whose error decreases like $\exp(-cN/\log(N))$ for $N$ quadrature points. The method is parallisable, avoids having to resolve singularities of the solution as $t\downarrow 0$, and avoids the large memory consumption that can be a challenge for time-stepping methods applied to time-fractional PDEs. The ODEs resulting from quadrature are solved using adaptive sparse spectral methods that converge exponentially with optimal linear complexity. These solutions of ODEs are reused for different times. We provide a complete analysis of our approach for fractional beam equations used to model small-amplitude vibration of viscoelastic materials with a fractional Kelvin-Voigt stress-strain relationship. We calculate the system's energy evolution over time and the surface deformation in cases of both constant and non-constant viscoelastic parameters. An infinite-dimensional ``solve-then-discretise'' approach considerably simplifies the analysis, which studies the generalisation of the numerical range of a quasi-linearisation of a suitable operator pencil. This allows us to build an efficient algorithm with explicit error control. The approach can be readily adapted to other time-fractional PDEs and is not constrained to fractional parameters in the range $0<\nu<1$.

In this paper, we consider a boundary value problem (BVP) for a fourth order nonlinear functional integro-differential equation. We establish the existence and uniqueness of solution and construct a numerical method for solving it. We prove that the method is of second order accuracy and obtain an estimate for the total error. Some examples demonstrate the validity of the obtained theoretical results and the efficiency of the numerical method.

北京阿比特科技有限公司