亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Balancing safety and performance is one of the predominant challenges in modern control system design. Moreover, it is crucial to robustly ensure safety without inducing unnecessary conservativeness that degrades performance. In this work we present a constructive approach for safety-critical control synthesis via Control Barrier Functions (CBF). By filtering a hand-designed controller via a CBF, we are able to attain performant behavior while providing rigorous guarantees of safety. In the face of disturbances, robust safety and performance are simultaneously achieved through the notion of Input-to-State Safety (ISSf). We take a tutorial approach by developing the CBF-design methodology in parallel with an inverted pendulum example, making the challenges and sensitivities in the design process concrete. To establish the capability of the proposed approach, we consider the practical setting of safety-critical design via CBFs for a connected automated vehicle (CAV) in the form of a class-8 truck without a trailer. Through experimentation we see the impact of unmodeled disturbances in the truck's actuation system on the safety guarantees provided by CBFs. We characterize these disturbances and using ISSf, produce a robust controller that achieves safety without conceding performance. We evaluate our design both in simulation, and for the first time on an automotive system, experimentally.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Grasping in dense clutter is a fundamental skill for autonomous robots. However, the crowdedness and occlusions in the cluttered scenario cause significant difficulties to generate valid grasp poses without collisions, which results in low efficiency and high failure rates. To address these, we present a generic framework called GE-Grasp for robotic motion planning in dense clutter, where we leverage diverse action primitives for occluded object removal and present the generator-evaluator architecture to avoid spatial collisions. Therefore, our GE-Grasp is capable of grasping objects in dense clutter efficiently with promising success rates. Specifically, we define three action primitives: target-oriented grasping for target capturing, pushing, and nontarget-oriented grasping to reduce the crowdedness and occlusions. The generators effectively provide various action candidates referring to the spatial information. Meanwhile, the evaluators assess the selected action primitive candidates, where the optimal action is implemented by the robot. Extensive experiments in simulated and real-world environments show that our approach outperforms the state-of-the-art methods of grasping in clutter with respect to motion efficiency and success rates. Moreover, we achieve comparable performance in the real world as that in the simulation environment, which indicates the strong generalization ability of our GE-Grasp. Supplementary material is available at: //github.com/CaptainWuDaoKou/GE-Grasp.

This paper investigates the collaboration of multiple connected and automated vehicles (CAVs) in different scenarios. In general, the collaboration of CAVs can be formulated as a nonlinear and nonconvex model predictive control (MPC) problem. Most of the existing approaches available for utilization to solve such an optimization problem suffer from the drawback of considerable computational burden, which hinders the practical implementation in real time. This paper proposes the use of sequential convex programming (SCP), which is a powerful approach to solving the nonlinear and nonconvex MPC problem in real time. To appropriately deploy the methodology, as a first stage, SCP requires linearization and discretization when addressing the nonlinear dynamics of the system model adequately. Based on the linearization and discretization, the original MPC problem can be transformed into a quadratically constrained quadratic programming (QCQP) problem. Besides, SCP also involves convexification to handle the associated nonconvex constraints. Thus, the nonconvex QCQP can be reduced to a quadratic programming (QP) problem that can be solved rather quickly. Therefore, the computational efficiency is suitably improved despite the existence of nonlinear and nonconvex characteristics, whereby the implementation is realized in real time. Furthermore, simulation results in three different scenarios of autonomous driving are presented to validate the effectiveness and efficiency of our proposed approach.

This paper presents a multi-layer motion planning and control architecture for autonomous racing, capable of avoiding static obstacles, performing active overtakes, and reaching velocities above 75 $m/s$. The used offline global trajectory generation and the online model predictive controller are highly based on optimization and dynamic models of the vehicle, where the tires and camber effects are represented in an extended version of the basic Pacejka Magic Formula. The proposed single-track model is identified and validated using multi-body motorsport libraries which allow simulating the vehicle dynamics properly, especially useful when real experimental data are missing. The fundamental regularization terms and constraints of the controller are tuned to reduce the rate of change of the inputs while assuring an acceptable velocity and path tracking. The motion planning strategy consists of a Fren\'et-Frame-based planner which considers a forecast of the opponent produced by a Kalman filter. The planner chooses the collision-free path and velocity profile to be tracked on a 3 seconds horizon to realize different goals such as following and overtaking. The proposed solution has been applied on a Dallara AV-21 racecar and tested at oval race tracks achieving lateral accelerations up to 25 $m/s^{2}$.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing a model's generalization capabilities, it can also address many other challenges and problems, from overcoming a limited amount of training data, to regularizing the objective, to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation and a taxonomy for existing works, this survey is concerned with data augmentation methods for textual classification and aims to provide a concise and comprehensive overview for researchers and practitioners. Derived from the taxonomy, we divide more than 100 methods into 12 different groupings and give state-of-the-art references expounding which methods are highly promising by relating them to each other. Finally, research perspectives that may constitute a building block for future work are provided.

Search-based software testing (SBST) typically relies on fitness functions to guide the search exploration toward software failures. There are two main techniques to define fitness functions: (a) automated fitness function computation from the specification of the system requirements and (b) manual fitness function design. Both techniques have advantages. The former uses information from the system requirements to guide the search toward portions of the input domain that are more likely to contain failures. The latter uses the engineers' domain knowledge. We propose ATheNA, a novel SBST framework that combines fitness functions that are automatically generated from requirements specifications and manually defined by engineers. We design and implement ATheNA-S, an instance of ATheNA that targets Simulink models. We evaluate ATheNA-S by considering a large set of models and requirements from different domains. We compare our solution with an SBST baseline tool that supports automatically generated fitness functions, and another one that supports manually defined fitness functions. Our results show that ATheNA-S generates more failure-revealing test cases than the baseline tools and that the difference between the performance of ATheNA-S and the baseline tools is not statistically significant. We also assess whether ATheNA-S could generate failure-revealing test cases when applied to a large case study from the automotive domain. Our results show that ATheNA-S successfully revealed a requirement violation in our case study.

Fifth Generation (5G) technology is an emerging and fast adopting technology which is being utilized in most of the novel applications that require highly reliable low-latency communications. It has the capability to provide greater coverage, better access, and best suited for high density networks. Having all these benefits, it clearly implies that 5G could be used to satisfy the requirements of Autonomous vehicles. Automated driving Vehicles and systems are developed with a promise to provide comfort, safe and efficient drive reducing the risk of life. But, recently there are fatalities due to these autonomous vehicles and systems. This is due to the lack of robust state-of-art which has to be improved further. With the advent of 5G technology and rise of autonomous vehicles (AVs), road safety is going to get more secure with less human errors. However, integration of 5G and AV is still at its infant stage with several research challenges that needs to be addressed. This survey first starts with a discussion on the current advancements in AVs, automation levels, enabling technologies and 5G requirements. Then, we focus on the emerging techniques required for integrating 5G technology with AVs, impact of 5G and B5G technologies on AVs along with security concerns in AVs. The paper also provides a comprehensive survey of recent developments in terms of standardisation activities on 5G autonomous vehicle technology and current projects. The article is finally concluded with lessons learnt, future research directions and challenges.

Optimizing noisy functions online, when evaluating the objective requires experiments on a deployed system, is a crucial task arising in manufacturing, robotics and many others. Often, constraints on safe inputs are unknown ahead of time, and we only obtain noisy information, indicating how close we are to violating the constraints. Yet, safety must be guaranteed at all times, not only for the final output of the algorithm. We introduce a general approach for seeking a stationary point in high dimensional non-linear stochastic optimization problems in which maintaining safety during learning is crucial. Our approach called LB-SGD is based on applying stochastic gradient descent (SGD) with a carefully chosen adaptive step size to a logarithmic barrier approximation of the original problem. We provide a complete convergence analysis of non-convex, convex, and strongly-convex smooth constrained problems, with first-order and zeroth-order feedback. Our approach yields efficient updates and scales better with dimensionality compared to existing approaches. We empirically compare the sample complexity and the computational cost of our method with existing safe learning approaches. Beyond synthetic benchmarks, we demonstrate the effectiveness of our approach on minimizing constraint violation in policy search tasks in safe reinforcement learning (RL).

Gaussian processes have become a promising tool for various safety-critical settings, since the posterior variance can be used to directly estimate the model error and quantify risk. However, state-of-the-art techniques for safety-critical settings hinge on the assumption that the kernel hyperparameters are known, which does not apply in general. To mitigate this, we introduce robust Gaussian process uniform error bounds in settings with unknown hyperparameters. Our approach computes a confidence region in the space of hyperparameters, which enables us to obtain a probabilistic upper bound for the model error of a Gaussian process with arbitrary hyperparameters. We do not require to know any bounds for the hyperparameters a priori, which is an assumption commonly found in related work. Instead, we are able to derive bounds from data in an intuitive fashion. We additionally employ the proposed technique to derive performance guarantees for a class of learning-based control problems. Experiments show that the bound performs significantly better than vanilla and fully Bayesian Gaussian processes.

Model Predictive Control (MPC) approaches are widely used in robotics, since they allow to compute updated trajectories while the robot is moving. They generally require heuristic references for the tracking terms and proper tuning of parameters of the cost function in order to obtain good performance. When for example, a legged robot has to react to disturbances from the environment (e.g., recover after a push) or track a certain goal with statically unstable gaits, the effectiveness of the algorithm can degrade. In this work we propose a novel optimization-based Reference Generator, named Governor, which exploits a Linear Inverted Pendulum model to compute reference trajectories for the Center of Mass, while taking into account the possible under-actuation of a gait (e.g. in a trot). The obtained trajectories are used as references for the cost function of the Nonlinear MPC presented in our previous work [1]. We also present a formulation that can guarantee a certain response time to reach a goal, without the need to tune the weights of the cost terms. In addition, foothold locations are corrected to drive the robot towards the goal. We demonstrate the effectiveness of our approach both in simulations and experiments in different scenarios with the Aliengo robot.

Sufficient training data is normally required to train deeply learned models. However, the number of pedestrian images per ID in person re-identification (re-ID) datasets is usually limited, since manually annotations are required for multiple camera views. To produce more data for training deeply learned models, generative adversarial network (GAN) can be leveraged to generate samples for person re-ID. However, the samples generated by vanilla GAN usually do not have labels. So in this paper, we propose a virtual label called Multi-pseudo Regularized Label (MpRL) and assign it to the generated images. With MpRL, the generated samples will be used as supplementary of real training data to train a deep model in a semi-supervised learning fashion. Considering data bias between generated and real samples, MpRL utilizes different contributions from predefined training classes. The contribution-based virtual labels are automatically assigned to generated samples to reduce ambiguous prediction in training. Meanwhile, MpRL only relies on predefined training classes without using extra classes. Furthermore, to reduce over-fitting, a regularized manner is applied to MpRL to regularize the learning process. To verify the effectiveness of MpRL, two state-of-the-art convolutional neural networks (CNNs) are adopted in our experiments. Experiments demonstrate that by assigning MpRL to generated samples, we can further improve the person re-ID performance on three datasets i.e., Market-1501, DukeMTMCreID, and CUHK03. The proposed method obtains +6.29%, +6.30% and +5.58% improvements in rank-1 accuracy over a strong CNN baseline respectively, and outperforms the state-of-the- art methods.

北京阿比特科技有限公司