亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A physics-informed machine learning model, in the form of a multi-output Gaussian process, is formulated using the Euler-Bernoulli beam equation. Given appropriate datasets, the model can be used to regress the analytical value of the structure's bending stiffness, interpolate responses, and make probabilistic inferences on latent physical quantities. The developed model is applied on a numerically simulated cantilever beam, where the regressed bending stiffness is evaluated and the influence measurement noise on the prediction quality is investigated. Further, the regressed probabilistic stiffness distribution is used in a structural health monitoring context, where the Mahalanobis distance is employed to reason about the possible location and extent of damage in the structural system. To validate the developed framework, an experiment is conducted and measured heterogeneous datasets are used to update the assumed analytical structural model.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Tensor · Networking · Eagle · SimPLe ·
2023 年 9 月 27 日

We show how quantum-inspired 2d tensor networks can be used to efficiently and accurately simulate the largest quantum processors from IBM, namely Eagle (127 qubits), Osprey (433 qubits) and Condor (1121 qubits). We simulate the dynamics of a complex quantum many-body system -- specifically, the kicked Ising experiment considered recently by IBM in Nature 618, p. 500-505 (2023) -- using graph-based Projected Entangled Pair States (gPEPS), which was proposed by some of us in PRB 99, 195105 (2019). Our results show that simple tensor updates are already sufficient to achieve very large unprecedented accuracy with remarkably low computational resources for this model. Apart from simulating the original experiment for 127 qubits, we also extend our results to 433 and 1121 qubits, thus setting a benchmark for the newest IBM quantum machines. We also report accurate simulations for infinitely-many qubits. Our results show that gPEPS are a natural tool to efficiently simulate quantum computers with an underlying lattice-based qubit connectivity, such as all quantum processors based on superconducting qubits.

We show how to reduce the computational time of the practical implementation of the Raviart-Thomas mixed method for second-order elliptic problems. The implementation takes advantage of a recent result which states that certain local subspaces of the vector unknown can be eliminated from the equations by transforming them into stabilization functions; see the paper published online in JJIAM on August 10, 2023. We describe in detail the new implementation (in MATLAB and a laptop with Intel(R) Core (TM) i7-8700 processor which has six cores and hyperthreading) and present numerical results showing 10 to 20% reduction in the computational time for the Raviart-Thomas method of index $k$, with $k$ ranging from 1 to 20, applied to a model problem.

We study the multivariate deconvolution problem of recovering the distribution of a signal from independent and identically distributed observations additively contaminated with random errors (noise) from a known distribution. For errors with independent coordinates having ordinary smooth densities, we derive an inversion inequality relating the $L^1$-Wasserstein distance between two distributions of the signal to the $L^1$-distance between the corresponding mixture densities of the observations. This smoothing inequality outperforms existing inversion inequalities. As an application of the inversion inequality to the Bayesian framework, we consider $1$-Wasserstein deconvolution with Laplace noise in dimension one using a Dirichlet process mixture of normal densities as a prior measure on the mixing distribution (or distribution of the signal). We construct an adaptive approximation of the sampling density by convolving the Laplace density with a well-chosen mixture of normal densities and show that the posterior measure concentrates around the sampling density at a nearly minimax rate, up to a log-factor, in the $L^1$-distance. The same posterior law is also shown to automatically adapt to the unknown Sobolev regularity of the mixing density, thus leading to a new Bayesian adaptive estimation procedure for mixing distributions with regular densities under the $L^1$-Wasserstein metric. We illustrate utility of the inversion inequality also in a frequentist setting by showing that an appropriate isotone approximation of the classical kernel deconvolution estimator attains the minimax rate of convergence for $1$-Wasserstein deconvolution in any dimension $d\geq 1$, when only a tail condition is required on the latent mixing density and we derive sharp lower bounds for these problems

This paper introduces novel weighted conformal p-values and methods for model-free selective inference. The problem is as follows: given test units with covariates $X$ and missing responses $Y$, how do we select units for which the responses $Y$ are larger than user-specified values while controlling the proportion of false positives? Can we achieve this without any modeling assumptions on the data and without any restriction on the model for predicting the responses? Last, methods should be applicable when there is a covariate shift between training and test data, which commonly occurs in practice. We answer these questions by first leveraging any prediction model to produce a class of well-calibrated weighted conformal p-values, which control the type-I error in detecting a large response. These p-values cannot be passed on to classical multiple testing procedures since they may not obey a well-known positive dependence property. Hence, we introduce weighted conformalized selection (WCS), a new procedure which controls false discovery rate (FDR) in finite samples. Besides prediction-assisted candidate selection, WCS (1) allows to infer multiple individual treatment effects, and (2) extends to outlier detection with inlier distributions shifts. We demonstrate performance via simulations and applications to causal inference, drug discovery, and outlier detection datasets.

Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry, gave suboptimal conditions for existence of solutions and proposed an $H^2$-conformal finite element method to approximate them. In this paper, the existence of Miura surfaces is studied using a mixed formulation. It is also proved that the constraints propagate from the boundary to the interior of the domain for well-chosen boundary conditions. Then, a numerical method based on a least-squares formulation, Taylor--Hood finite elements and a Newton method is introduced to approximate Miura surfaces. The numerical method is proved to converge at order one in space and numerical tests are performed to demonstrate its robustness.

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.

Prediction is a classic challenge in spatial statistics and the inclusion of spatial covariates can greatly improve predictive performance when incorporated into a model with latent spatial effects. It is desirable to develop flexible regression models that allow for nonlinearities and interactions in the covariate structure. Machine learning models have been suggested in the spatial context, allowing for spatial dependence in the residuals, but fail to provide reliable uncertainty estimates. In this paper, we investigate a novel combination of a Gaussian process spatial model and a Bayesian Additive Regression Tree (BART) model. The computational burden of the approach is reduced by combining Markov chain Monte Carlo (MCMC) with the Integrated Nested Laplace Approximation (INLA) technique. We study the performance of the method via simulations and use the model to predict anthropometric responses, collected via household cluster samples in Kenya.

The reconstruction kernel in computed tomography (CT) generation determines the texture of the image. Consistency in reconstruction kernels is important as the underlying CT texture can impact measurements during quantitative image analysis. Harmonization (i.e., kernel conversion) minimizes differences in measurements due to inconsistent reconstruction kernels. Existing methods investigate harmonization of CT scans in single or multiple manufacturers. However, these methods require paired scans of hard and soft reconstruction kernels that are spatially and anatomically aligned. Additionally, a large number of models need to be trained across different kernel pairs within manufacturers. In this study, we adopt an unpaired image translation approach to investigate harmonization between and across reconstruction kernels from different manufacturers by constructing a multipath cycle generative adversarial network (GAN). We use hard and soft reconstruction kernels from the Siemens and GE vendors from the National Lung Screening Trial dataset. We use 50 scans from each reconstruction kernel and train a multipath cycle GAN. To evaluate the effect of harmonization on the reconstruction kernels, we harmonize 50 scans each from Siemens hard kernel, GE soft kernel and GE hard kernel to a reference Siemens soft kernel (B30f) and evaluate percent emphysema. We fit a linear model by considering the age, smoking status, sex and vendor and perform an analysis of variance (ANOVA) on the emphysema scores. Our approach minimizes differences in emphysema measurement and highlights the impact of age, sex, smoking status and vendor on emphysema quantification.

Over the last two decades, the field of geometric curve evolutions has attracted significant attention from scientific computing. One of the most popular numerical methods for solving geometric flows is the so-called BGN scheme, which was proposed by Barrett, Garcke, and Nurnberg (J. Comput. Phys., 222 (2007), pp. 441{467), due to its favorable properties (e.g., its computational efficiency and the good mesh property). However, the BGN scheme is limited to first-order accuracy in time, and how to develop a higher-order numerical scheme is challenging. In this paper, we propose a fully discrete, temporal second-order parametric finite element method, which incorporates a mesh regularization technique when necessary, for solving geometric flows of curves. The scheme is constructed based on the BGN formulation and a semi-implicit Crank-Nicolson leap-frog time stepping discretization as well as a linear finite element approximation in space. More importantly, we point out that the shape metrics, such as manifold distance and Hausdorff distance, instead of function norms, should be employed to measure numerical errors. Extensive numerical experiments demonstrate that the proposed BGN-based scheme is second-order accurate in time in terms of shape metrics. Moreover, by employing the classical BGN scheme as a mesh regularization technique when necessary, our proposed second-order scheme exhibits good properties with respect to the mesh distribution.

A robust nonconforming mixed finite element method is developed for a strain gradient elasticity (SGE) model. In two and three dimensional cases, a lower order $C^0$-continuous $H^2$-nonconforming finite element is constructed for the displacement field through enriching the quadratic Lagrange element with bubble functions. This together with the linear Lagrange element is exploited to discretize a mixed formulation of the SGE model. The robust discrete inf-sup condition is established. The sharp and uniform error estimates with respect to both the small size parameter and the Lam\'{e} coefficient are achieved, which is also verified by numerical results. In addition, the uniform regularity of the SGE model is derived under two reasonable assumptions.

北京阿比特科技有限公司