亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces novel weighted conformal p-values and methods for model-free selective inference. The problem is as follows: given test units with covariates $X$ and missing responses $Y$, how do we select units for which the responses $Y$ are larger than user-specified values while controlling the proportion of false positives? Can we achieve this without any modeling assumptions on the data and without any restriction on the model for predicting the responses? Last, methods should be applicable when there is a covariate shift between training and test data, which commonly occurs in practice. We answer these questions by first leveraging any prediction model to produce a class of well-calibrated weighted conformal p-values, which control the type-I error in detecting a large response. These p-values cannot be passed on to classical multiple testing procedures since they may not obey a well-known positive dependence property. Hence, we introduce weighted conformalized selection (WCS), a new procedure which controls false discovery rate (FDR) in finite samples. Besides prediction-assisted candidate selection, WCS (1) allows to infer multiple individual treatment effects, and (2) extends to outlier detection with inlier distributions shifts. We demonstrate performance via simulations and applications to causal inference, drug discovery, and outlier detection datasets.

相關內容

The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.

In this paper, we develop an arbitrary-order locking-free enriched Galerkin method for the linear elasticity problem using the stress-displacement formulation in both two and three dimensions. The method is based on the mixed discontinuous Galerkin method in [30], but with a different stress approximation space that enriches the arbitrary order continuous Galerkin space with some piecewise symmetric-matrix valued polynomials. We prove that the method is well-posed and provide a parameter-robust error estimate, which confirms the locking-free property of the EG method. We present some numerical examples in two and three dimensions to demonstrate the effectiveness of the proposed method.

Solutions to many important partial differential equations satisfy bounds constraints, but approximations computed by finite element or finite difference methods typically fail to respect the same conditions. Chang and Nakshatrala enforce such bounds in finite element methods through the solution of variational inequalities rather than linear variational problems. Here, we provide a theoretical justification for this method, including higher-order discretizations. We prove an abstract best approximation result for the linear variational inequality and estimates showing that bounds-constrained polynomials provide comparable approximation power to standard spaces. For any unconstrained approximation to a function, there exists a constrained approximation which is comparable in the $W^{1,p}$ norm. In practice, one cannot efficiently represent and manipulate the entire family of bounds-constrained polynomials, but applying bounds constraints to the coefficients of a polynomial in the Bernstein basis guarantees those constraints on the polynomial. Although our theoretical results do not guaruntee high accuracy for this subset of bounds-constrained polynomials, numerical results indicate optimal orders of accuracy for smooth solutions and sharp resolution of features in convection-diffusion problems, all subject to bounds constraints.

Learning tasks play an increasingly prominent role in quantum information and computation. They range from fundamental problems such as state discrimination and metrology over the framework of quantum probably approximately correct (PAC) learning, to the recently proposed shadow variants of state tomography. However, the many directions of quantum learning theory have so far evolved separately. We propose a general mathematical formalism for describing quantum learning by training on classical-quantum data and then testing how well the learned hypothesis generalizes to new data. In this framework, we prove bounds on the expected generalization error of a quantum learner in terms of classical and quantum information-theoretic quantities measuring how strongly the learner's hypothesis depends on the specific data seen during training. To achieve this, we use tools from quantum optimal transport and quantum concentration inequalities to establish non-commutative versions of decoupling lemmas that underlie recent information-theoretic generalization bounds for classical machine learning. Our framework encompasses and gives intuitively accessible generalization bounds for a variety of quantum learning scenarios such as quantum state discrimination, PAC learning quantum states, quantum parameter estimation, and quantumly PAC learning classical functions. Thereby, our work lays a foundation for a unifying quantum information-theoretic perspective on quantum learning.

We consider the general problem of Bayesian binary regression and we introduce a new class of distributions, the Perturbed Unified Skew Normal (pSUN, henceforth), which generalizes the Unified Skew-Normal (SUN) class. We show that the new class is conjugate to any binary regression model, provided that the link function may be expressed as a scale mixture of Gaussian densities. We discuss in detail the popular logit case, and we show that, when a logistic regression model is combined with a Gaussian prior, posterior summaries such as cumulants and normalizing constants can be easily obtained through the use of an importance sampling approach, opening the way to straightforward variable selection procedures. For more general priors, the proposed methodology is based on a simple Gibbs sampler algorithm. We also claim that, in the p > n case, the proposed methodology shows better performances - both in terms of mixing and accuracy - compared to the existing methods. We illustrate the performance through several simulation studies and two data analyses.

Generalized linear models (GLMs) are routinely used for modeling relationships between a response variable and a set of covariates. The simple form of a GLM comes with easy interpretability, but also leads to concerns about model misspecification impacting inferential conclusions. A popular semi-parametric solution adopted in the frequentist literature is quasi-likelihood, which improves robustness by only requiring correct specification of the first two moments. We develop a robust approach to Bayesian inference in GLMs through quasi-posterior distributions. We show that quasi-posteriors provide a coherent generalized Bayes inference method, while also approximating so-called coarsened posteriors. In so doing, we obtain new insights into the choice of coarsening parameter. Asymptotically, the quasi-posterior converges in total variation to a normal distribution and has important connections with the loss-likelihood bootstrap posterior. We demonstrate that it is also well-calibrated in terms of frequentist coverage. Moreover, the loss-scale parameter has a clear interpretation as a dispersion, and this leads to a consolidated method of moments estimator.

This paper considers the extension of data-enabled predictive control (DeePC) to nonlinear systems via general basis functions. Firstly, we formulate a basis functions DeePC behavioral predictor and we identify necessary and sufficient conditions for equivalence with a corresponding basis functions multi-step identified predictor. The derived conditions yield a dynamic regularization cost function that enables a well-posed (i.e., consistent) basis functions formulation of nonlinear DeePC. To optimize computational efficiency of basis functions DeePC we further develop two alternative formulations that use a simpler, sparse regularization cost function and ridge regression, respectively. Consistency implications for Koopman DeePC as well as several methods for constructing the basis functions representation are also indicated. The effectiveness of the developed consistent basis functions DeePC formulations is illustrated on a benchmark nonlinear pendulum state-space model, for both noise free and noisy data.

We propose a meta-learning method for semi-supervised learning that learns from multiple tasks with heterogeneous attribute spaces. The existing semi-supervised meta-learning methods assume that all tasks share the same attribute space, which prevents us from learning with a wide variety of tasks. With the proposed method, the expected test performance on tasks with a small amount of labeled data is improved with unlabeled data as well as data in various tasks, where the attribute spaces are different among tasks. The proposed method embeds labeled and unlabeled data simultaneously in a task-specific space using a neural network, and the unlabeled data's labels are estimated by adapting classification or regression models in the embedding space. For the neural network, we develop variable-feature self-attention layers, which enable us to find embeddings of data with different attribute spaces with a single neural network by considering interactions among examples, attributes, and labels. Our experiments on classification and regression datasets with heterogeneous attribute spaces demonstrate that our proposed method outperforms the existing meta-learning and semi-supervised learning methods.

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

When modeling a vector of risk variables, extreme scenarios are often of special interest. The peaks-over-thresholds method hinges on the notion that, asymptotically, the excesses over a vector of high thresholds follow a multivariate generalized Pareto distribution. However, existing literature has primarily concentrated on the setting when all risk variables are always large simultaneously. In reality, this assumption is often not met, especially in high dimensions. In response to this limitation, we study scenarios where distinct groups of risk variables may exhibit joint extremes while others do not. These discernible groups are derived from the angular measure inherent in the corresponding max-stable distribution, whence the term extreme direction. We explore such extreme directions within the framework of multivariate generalized Pareto distributions, with a focus on their probability density functions in relation to an appropriate dominating measure. Furthermore, we provide a stochastic construction that allows any prespecified set of risk groups to constitute the distribution's extreme directions. This construction takes the form of a smoothed max-linear model and accommodates the full spectrum of conceivable max-stable dependence structures. Additionally, we introduce a generic simulation algorithm tailored for multivariate generalized Pareto distributions, offering specific implementations for extensions of the logistic and H\"usler-Reiss families capable of carrying arbitrary extreme directions.

北京阿比特科技有限公司