亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Causal representation learning algorithms discover lower-dimensional representations of data that admit a decipherable interpretation of cause and effect; as achieving such interpretable representations is challenging, many causal learning algorithms utilize elements indicating prior information, such as (linear) structural causal models, interventional data, or weak supervision. Unfortunately, in exploratory causal representation learning, such elements and prior information may not be available or warranted. Alternatively, scientific datasets often have multiple modalities or physics-based constraints, and the use of such scientific, multimodal data has been shown to improve disentanglement in fully unsupervised settings. Consequently, we introduce a causal representation learning algorithm (causalPIMA) that can use multimodal data and known physics to discover important features with causal relationships. Our innovative algorithm utilizes a new differentiable parametrization to learn a directed acyclic graph (DAG) together with a latent space of a variational autoencoder in an end-to-end differentiable framework via a single, tractable evidence lower bound loss function. We place a Gaussian mixture prior on the latent space and identify each of the mixtures with an outcome of the DAG nodes; this novel identification enables feature discovery with causal relationships. Tested against a synthetic and a scientific dataset, our results demonstrate the capability of learning an interpretable causal structure while simultaneously discovering key features in a fully unsupervised setting.

相關內容

We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.

The air-gap macro element is reformulated such that rotation, rotor or stator skewing and rotor eccentricity can be incorporated easily. The air-gap element is evaluated using Fast Fourier Transforms which in combination with the Conjugate Gradient algorithm leads to highly efficient and memory inexpensive iterative solution scheme. The improved air-gap element features beneficial approximation properties and is competitive to moving-band and sliding-surface technique.

This paper addresses the estimation of the second-order structure of a manifold cross-time random field (RF) displaying spatially varying Long Range Dependence (LRD), adopting the functional time series framework introduced in Ruiz-Medina (2022). Conditions for the asymptotic unbiasedness of the integrated periodogram operator in the Hilbert-Schmidt operator norm are derived beyond structural assumptions. Weak-consistent estimation of the long-memory operator is achieved under a semiparametric functional spectral framework in the Gaussian context. The case where the projected manifold process can display Short Range Dependence (SRD) and LRD at different manifold scales is also analyzed. The performance of both estimation procedures is illustrated in the simulation study, in the context of multifractionally integrated spherical functional autoregressive-moving average (SPHARMA(p,q)) processes.

We study operator - or noncommutative - variants of constraint satisfaction problems (CSPs). These higher-dimensional variants are a core topic of investigation in quantum information, where they arise as nonlocal games and entangled multiprover interactive proof systems (MIP*). The idea of higher-dimensional relaxations of CSPs is also important in the classical literature. For example since the celebrated work of Goemans and Williamson on Max-Cut, higher dimensional vector relaxations have been central in the design of approximation algorithms for classical CSPs. We introduce a framework for designing approximation algorithms for noncommutative CSPs. Prior to this work Max-$2$-Lin$(k)$ was the only family of noncommutative CSPs known to be efficiently solvable. This work is the first to establish approximation ratios for a broader class of noncommutative CSPs. In the study of classical CSPs, $k$-ary decision variables are often represented by $k$-th roots of unity, which generalise to the noncommutative setting as order-$k$ unitary operators. In our framework, using representation theory, we develop a way of constructing unitary solutions from SDP relaxations, extending the pioneering work of Tsirelson on XOR games. Then, we introduce a novel rounding scheme to transform these solutions to order-$k$ unitaries. Our main technical innovation here is a theorem guaranteeing that, for any set of unitary operators, there exists a set of order-$k$ unitaries that closely mimics it. As an integral part of the rounding scheme, we prove a random matrix theory result that characterises the distribution of the relative angles between eigenvalues of random unitaries using tools from free probability.

There has been recently a lot of interest in the analysis of the Stein gradient descent method, a deterministic sampling algorithm. It is based on a particle system moving along the gradient flow of the Kullback-Leibler divergence towards the asymptotic state corresponding to the desired distribution. Mathematically, the method can be formulated as a joint limit of time $t$ and number of particles $N$ going to infinity. We first observe that the recent work of Lu, Lu and Nolen (2019) implies that if $t \approx \log \log N$, then the joint limit can be rigorously justified in the Wasserstein distance. Not satisfied with this time scale, we explore what happens for larger times by investigating the stability of the method: if the particles are initially close to the asymptotic state (with distance $\approx 1/N$), how long will they remain close? We prove that this happens in algebraic time scales $t \approx \sqrt{N}$ which is significantly better. The exploited method, developed by Caglioti and Rousset for the Vlasov equation, is based on finding a functional invariant for the linearized equation. This allows to eliminate linear terms and arrive at an improved Gronwall-type estimate.

At the crossway of machine learning and data analysis, anomaly detection aims at identifying observations that exhibit abnormal behaviour. Be it measurement errors, disease development, severe weather, production quality default(s) (items) or failed equipment, financial frauds or crisis events, their on-time identification and isolation constitute an important task in almost any area of industry and science. While a substantial body of literature is devoted to detection of anomalies, little attention is payed to their explanation. This is the case mostly due to intrinsically non-supervised nature of the task and non-robustness of the exploratory methods like principal component analysis (PCA). We introduce a new statistical tool dedicated for exploratory analysis of abnormal observations using data depth as a score. Anomaly component analysis (shortly ACA) is a method that searches a low-dimensional data representation that best visualises and explains anomalies. This low-dimensional representation not only allows to distinguish groups of anomalies better than the methods of the state of the art, but as well provides a -- linear in variables and thus easily interpretable -- explanation for anomalies. In a comparative simulation and real-data study, ACA also proves advantageous for anomaly analysis with respect to methods present in the literature.

This paper introduces a new theoretical and computational framework for a data driven Koopman mode analysis of nonlinear dynamics. To alleviate the potential problem of ill-conditioned eigenvectors in the existing implementations of the Dynamic Mode Decomposition (DMD) and the Extended Dynamic Mode Decomposition (EDMD), the new method introduces a Koopman-Schur decomposition that is entirely based on unitary transformations. The analysis in terms of the eigenvectors as modes of a Koopman operator compression is replaced with a modal decomposition in terms of a flag of invariant subspaces that correspond to selected eigenvalues. The main computational tool from the numerical linear algebra is the partial ordered Schur decomposition that provides convenient orthonormal bases for these subspaces. In the case of real data, a real Schur form is used and the computation is based on real orthogonal transformations. The new computational scheme is presented in the framework of the Extended DMD and the kernel trick is used.

This work deals with developing two fast randomized algorithms for computing the generalized tensor singular value decomposition (GTSVD) based on the tubal product (t-product). The random projection method is utilized to compute the important actions of the underlying data tensors and use them to get small sketches of the original data tensors, which are easier to be handled. Due to the small size of the sketch tensors, deterministic approaches are applied to them to compute their GTSVDs. Then, from the GTSVD of the small sketch tensors, the GTSVD of the original large-scale data tensors is recovered. Some experiments are conducted to show the effectiveness of the proposed approach.

We propose a simple multivariate normality test based on Kac-Bernstein's characterization, which can be conducted by utilising existing statistical independence tests for sums and differences of data samples. We also perform its empirical investigation, which reveals that for high-dimensional data, the proposed approach may be more efficient than the alternative ones. The accompanying code repository is provided at \url{//shorturl.at/rtuy5}.

Many complex tasks and environments can be decomposed into simpler, independent parts. Discovering such underlying compositional structure has the potential to expedite adaptation and enable compositional generalization. Despite progress, our most powerful systems struggle to compose flexibly. While most of these systems are monolithic, modularity promises to allow capturing the compositional nature of many tasks. However, it is unclear under which circumstances modular systems discover this hidden compositional structure. To shed light on this question, we study a teacher-student setting with a modular teacher where we have full control over the composition of ground truth modules. This allows us to relate the problem of compositional generalization to that of identification of the underlying modules. We show theoretically that identification up to linear transformation purely from demonstrations is possible in hypernetworks without having to learn an exponential number of module combinations. While our theory assumes the infinite data limit, in an extensive empirical study we demonstrate how meta-learning from finite data can discover modular solutions that generalize compositionally in modular but not monolithic architectures. We further show that our insights translate outside the teacher-student setting and demonstrate that in tasks with compositional preferences and tasks with compositional goals hypernetworks can discover modular policies that compositionally generalize.

北京阿比特科技有限公司