There has been recently a lot of interest in the analysis of the Stein gradient descent method, a deterministic sampling algorithm. It is based on a particle system moving along the gradient flow of the Kullback-Leibler divergence towards the asymptotic state corresponding to the desired distribution. Mathematically, the method can be formulated as a joint limit of time $t$ and number of particles $N$ going to infinity. We first observe that the recent work of Lu, Lu and Nolen (2019) implies that if $t \approx \log \log N$, then the joint limit can be rigorously justified in the Wasserstein distance. Not satisfied with this time scale, we explore what happens for larger times by investigating the stability of the method: if the particles are initially close to the asymptotic state (with distance $\approx 1/N$), how long will they remain close? We prove that this happens in algebraic time scales $t \approx \sqrt{N}$ which is significantly better. The exploited method, developed by Caglioti and Rousset for the Vlasov equation, is based on finding a functional invariant for the linearized equation. This allows to eliminate linear terms and arrive at an improved Gronwall-type estimate.
Spectral deferred corrections (SDC) are a class of iterative methods for the numerical solution of ordinary differential equations. SDC can be interpreted as a Picard iteration to solve a fully implicit collocation problem, preconditioned with a low-order method. It has been widely studied for first-order problems, using explicit, implicit or implicit-explicit Euler and other low-order methods as preconditioner. For first-order problems, SDC achieves arbitrary order of accuracy and possesses good stability properties. While numerical results for SDC applied to the second-order Lorentz equations exist, no theoretical results are available for SDC applied to second-order problems. We present an analysis of the convergence and stability properties of SDC using velocity-Verlet as the base method for general second-order initial value problems. Our analysis proves that the order of convergence depends on whether the force in the system depends on the velocity. We also demonstrate that the SDC iteration is stable under certain conditions. Finally, we show that SDC can be computationally more efficient than a simple Picard iteration or a fourth-order Runge-Kutta-Nystr\"om method.
We ask whether there exists a function or measure that (1) minimizes a given convex functional or risk and (2) satisfies a symmetry property specified by an amenable group of transformations. Examples of such symmetry properties are invariance, equivariance, or quasi-invariance. Our results draw on old ideas of Stein and Le Cam and on approximate group averages that appear in ergodic theorems for amenable groups. A class of convex sets known as orbitopes in convex analysis emerges as crucial, and we establish properties of such orbitopes in nonparametric settings. We also show how a simple device called a cocycle can be used to reduce different forms of symmetry to a single problem. As applications, we obtain results on invariant kernel mean embeddings and a Monge-Kantorovich theorem on optimality of transport plans under symmetry constraints. We also explain connections to the Hunt-Stein theorem on invariant tests.
The Crank-Nicolson (CN) method is a well-known time integrator for evolutionary partial differential equations (PDEs) arising in many real-world applications. Since the solution at any time depends on the solution at previous time steps, the CN method is inherently difficult to parallelize. In this paper, we consider a parallel method for the solution of evolutionary PDEs with the CN scheme. Using an all-at-once approach, we can solve for all time steps simultaneously using a parallelizable over time preconditioner within a standard iterative method. Due to the diagonalization of the proposed preconditioner, we can prove that most eigenvalues of preconditioned matrices are equal to 1 and the others lie in the set: $\left\{z\in\mathbb{C}: 1/(1 + \alpha) < |z| < 1/(1 - \alpha)~{\rm and}~\Re{\rm e}(z) > 0\right\}$, where $0 < \alpha < 1$ is a free parameter. Besides, the efficient implementation of the proposed preconditioner is described. Given certain conditions, we prove that the preconditioned GMRES method exhibits a mesh-independent convergence rate. Finally, we will verify both theoretical findings and the efficacy of the proposed preconditioner via numerical experiments on financial option pricing PDEs.
We propose a hybrid iterative method based on MIONet for PDEs, which combines the traditional numerical iterative solver and the recent powerful machine learning method of neural operator, and further systematically analyze its theoretical properties, including the convergence condition, the spectral behavior, as well as the convergence rate, in terms of the errors of the discretization and the model inference. We show the theoretical results for the frequently-used smoothers, i.e. Richardson (damped Jacobi) and Gauss-Seidel. We give an upper bound of the convergence rate of the hybrid method w.r.t. the model correction period, which indicates a minimum point to make the hybrid iteration converge fastest. Several numerical examples including the hybrid Richardson (Gauss-Seidel) iteration for the 1-d (2-d) Poisson equation are presented to verify our theoretical results, and also reflect an excellent acceleration effect. As a meshless acceleration method, it is provided with enormous potentials for practice applications.
This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.
We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.
We propose a new method called the Metropolis-adjusted Mirror Langevin algorithm for approximate sampling from distributions whose support is a compact and convex set. This algorithm adds an accept-reject filter to the Markov chain induced by a single step of the Mirror Langevin algorithm (Zhang et al., 2020), which is a basic discretisation of the Mirror Langevin dynamics. Due to the inclusion of this filter, our method is unbiased relative to the target, while known discretisations of the Mirror Langevin dynamics including the Mirror Langevin algorithm have an asymptotic bias. For this algorithm, we also give upper bounds for the number of iterations taken to mix to a constrained distribution whose potential is relatively smooth, convex, and Lipschitz continuous with respect to a self-concordant mirror function. As a consequence of the reversibility of the Markov chain induced by the inclusion of the Metropolis-Hastings filter, we obtain an exponentially better dependence on the error tolerance for approximate constrained sampling. We also present numerical experiments that corroborate our theoretical findings.
Complex interval arithmetic is a powerful tool for the analysis of computational errors. The naturally arising rectangular, polar, and circular (together called primitive) interval types are not closed under simple arithmetic operations and their use yields overly relaxed bounds. The later introduced polygonal type, on the other hand, allows for arbitrarily precise representaion of the above operations for a higher computational cost. We propose the polyarcular interval type as an effective extension of the previous types. The polyarcular interval can represent all primitive intervals and most of their arithmetic combinations precisely and has a approximation capability competing with that of the polygonal interval. In particular, in antenna tolerance analysis it can achieve perfect accuracy for lower computational cost then the polygonal type, which we show in a relevant case study. In this paper, we present a rigorous analysis of the arithmetic properties of all five interval types, involving a new algebro-geometric method of boundary analysis.
We provide a new theoretical framework for the variable-step deferred correction (DC) methods based on the well-known BDF2 formula. By using the discrete orthogonal convolution kernels, some high-order BDF2-DC methods are proven to be stable on arbitrary time grids according to the recent definition of stability (SINUM, 60: 2253-2272). It significantly relaxes the existing step-ratio restrictions for the BDF2-DC methods (BIT, 62: 1789-1822). The associated sharp error estimates are established by taking the numerical effects of the starting approximations into account, and they suggest that the BDF2-DC methods have no aftereffect, that is, the lower-order starting scheme for the BDF2 scheme will not cause a loss in the accuracy of the high-order BDF2-DC methods. Extensive tests on the graded and random time meshes are presented to support the new theory.
It is well-known that the Fourier-Galerkin spectral method has been a popular approach for the numerical approximation of the deterministic Boltzmann equation with spectral accuracy rigorously proved. In this paper, we will show that such a spectral convergence of the Fourier-Galerkin spectral method also holds for the Boltzmann equation with uncertainties arising from both collision kernel and initial condition. Our proof is based on newly-established spaces and norms that are carefully designed and take the velocity variable and random variables with their high regularities into account altogether. For future studies, this theoretical result will provide a solid foundation for further showing the convergence of the full-discretized system where both the velocity and random variables are discretized simultaneously.