The field of quantum information is becoming more known to the general public. However, effectively demonstrating the concepts underneath quantum science and technology to the general public can be a challenging job. We investigate, extend, and greatly expand here "quantum candies" (invented by Jacobs), a pedagogical model for intuitively describing some basic concepts in quantum information, including quantum bits, complementarity, the no-cloning principle, and entanglement. Following Jacob's quantum candies description of the well-known quantum key distribution protocol BB84, we explicitly demonstrate additional quantum cryptography protocols and quantum communication protocols, using generalized quantum candies (including correlated pairs of qandies). These demonstrations are done in an approachable manner, that can be explained to high-school students, without using the hard-to-grasp concept of superpositions and its mathematics. The intuitive model we investigate has a fascinating overlap with some of the most basic features of quantum theory. Hence, it can be a valuable tool for science and engineering educators who would like to help the general public to gain more insights into quantum science and technology. For the experts, the model we present, due to not employing quantum superpositions, enables - in some sense - extending far beyond quantum theory. Most remarkably, "quantum" candies of some unique type can be defined, such that non-local boxes (of the Popescu-Rohrlich type) as well as regular (correlated) quantum candies can be generated by a single `"quantum" candies machine.
We investigate quantum circuits for graph representation learning, and propose equivariant quantum graph circuits (EQGCs), as a class of parameterized quantum circuits with strong relational inductive bias for learning over graph-structured data. Conceptually, EQGCs serve as a unifying framework for quantum graph representation learning, allowing us to define several interesting subclasses subsuming existing proposals. In terms of the representation power, we prove that the subclasses of interest are universal approximators for functions over the bounded graph domain, and provide experimental evidence. Our theoretical perspective on quantum graph machine learning methods opens many directions for further work, and could lead to models with capabilities beyond those of classical approaches.
Quantum computing is evolving so quickly that forces us to revisit, rewrite, and update the basis of the theory. Basic Quantum Algorithms revisits the first quantum algorithms. It started in 1995 with Deutsch trying to evaluate a function at two domain points simultaneously. Then, Deutsch and Jozsa created in 1992 a quantum algorithm that determines whether a Boolean function is constant or balanced. In the next year, Bernstein and Vazirani realized that the same algorithm can be used to find a specific Boolean function in the set of linear Boolean functions. In 1994, Simon presented a new quantum algorithm that determines whether a function is one-to-one or two-to-one exponentially faster than any classical algorithm for the same problem. In the same year, Shor created two new quantum algorithms for factoring integers and calculating discrete logarithms, threatening the cryptography methods widely used nowadays. In 1995, Kitaev described an alternative version for Shor's algorithms that proved useful in many other applications. In the following year, Grover created a quantum search algorithm quadratically faster than its classical counterpart. In this work, all those remarkable algorithms are described in detail with a focus on the circuit model.
The development of a future, global quantum communication network (or quantum internet) will enable high rate private communication and entanglement distribution over very long distances. However, the large-scale performance of ground-based quantum networks (which employ photons as information carriers through optical-fibres) is fundamentally limited by fibre quality and link length, with the latter being a primary design factor for practical network architectures. While these fundamental limits are well established for arbitrary network topologies, the question of how to best design global architectures remains open. In this work, we introduce a large-scale quantum network model called weakly-regular architectures. Such networks are capable of idealising network connectivity, provide freedom to capture a broad class of spatial topologies and remain analytically treatable. This allows us to investigate the effectiveness of large-scale networks with consistent connective properties, and unveil critical conditions under which end-to-end rates remain optimal. Furthermore, through a strict performance comparison of ideal, ground-based quantum networks with that of realistic satellite quantum communication protocols, we establish conditions for which satellites can be used to outperform fibre-based quantum infrastructure; {rigorously proving the efficacy of satellite-based technologies for global quantum communications.
We propose a series of data-centric heuristics for improving the performance of machine learning systems when applied to problems in quantum information science. In particular, we consider how systematic engineering of training sets can significantly enhance the accuracy of pre-trained neural networks used for quantum state reconstruction without altering the underlying architecture. We find that it is not always optimal to engineer training sets to exactly match the expected distribution of a target scenario, and instead, performance can be further improved by biasing the training set to be slightly more mixed than the target. This is due to the heterogeneity in the number of free variables required to describe states of different purity, and as a result, overall accuracy of the network improves when training sets of a fixed size focus on states with the least constrained free variables. For further clarity, we also include a "toy model" demonstration of how spurious correlations can inadvertently enter synthetic data sets used for training, how the performance of systems trained with these correlations can degrade dramatically, and how the inclusion of even relatively few counterexamples can effectively remedy such problems.
A core challenge for superconducting quantum computers is to scale up the number of qubits in each processor without increasing noise or cross-talk. Distributing a quantum computer across nearby small qubit arrays, known as chiplets, could solve many problems associated with size. We propose a chiplet architecture over microwave links with potential to exceed monolithic performance on near-term hardware. We model and evaluate the chiplet architecture in a way that bridges the physical and network layers. We find concrete evidence that distributed quantum computing may accelerate the path toward useful and ultimately scalable quantum computers. In the long-term, short-range networks may underlie quantum computers just as local area networks underlie classical datacenters and supercomputers today.
Defining and accurately measuring generalization in generative models remains an ongoing challenge and a topic of active research within the machine learning community. This is in contrast to discriminative models, where there is a clear definition of generalization, i.e., the model's classification accuracy when faced with unseen data. In this work, we construct a simple and unambiguous approach to evaluate the generalization capabilities of generative models. Using the sample-based generalization metrics proposed here, any generative model, from state-of-the-art classical generative models such as GANs to quantum models such as Quantum Circuit Born Machines, can be evaluated on the same ground on a concrete well-defined framework. In contrast to other sample-based metrics for probing generalization, we leverage constrained optimization problems (e.g., cardinality constrained problems) and use these discrete datasets to define specific metrics capable of unambiguously measuring the quality of the samples and the model's generalization capabilities for generating data beyond the training set but still within the valid solution space. Additionally, our metrics can diagnose trainability issues such as mode collapse and overfitting, as we illustrate when comparing GANs to quantum-inspired models built out of tensor networks. Our simulation results show that our quantum-inspired models have up to a $68 \times$ enhancement in generating unseen unique and valid samples compared to GANs, and a ratio of 61:2 for generating samples with better quality than those observed in the training set. We foresee these metrics as valuable tools for rigorously defining practical quantum advantage in the domain of generative modeling.
Logics with analogous semantics, such as Fuzzy Logic, have a number of explanatory and application advantages, the most well-known being the ability to help experts develop control systems. From a cognitive systems perspective, such languages also have the advantage of being grounded in perception. For social decision making in humans, it is vital that logical conclusions about others (cognitive empathy) are grounded in empathic emotion (affective empathy). Classical Fuzzy Logic, however, has several disadvantages: it is not obvious how complex formulae, e.g., the description of events in a text, can be (a) formed, (b) grounded, and (c) used in logical reasoning. The two-layered Context Logic (CL) was designed to address these issue. Formally based on a lattice semantics, like classical Fuzzy Logic, CL also features an analogous semantics for complex fomulae. With the Activation Bit Vector Machine (ABVM), it has a simple and classical logical reasoning mechanism with an inherent imagery process based on the Vector Symbolic Architecture (VSA) model of distributed neuronal processing. This paper adds to the existing theory how scales, as necessary for adjective and verb semantics can be handled by the system.
As quantum programming evolves, more and more quantum programming languages are being developed. As a result, debugging and testing quantum programs have become increasingly important. While bug fixing in classical programs has come a long way, there is a lack of research in quantum programs. To this end, this paper presents a comprehensive study on bug fixing in quantum programs. We collect and investigate 96 real-world bugs and their fixes from four popular quantum programming languages Qiskit, Cirq, Q#, and ProjectQ). Our study shows that a high proportion of bugs in quantum programs are quantum-specific bugs (over 80%), which requires further research in the bug fixing domain. We also summarize and extend the bug patterns in quantum programs and subdivide the most critical part, math-related bugs, to make it more applicable to the study of quantum programs. Our findings summarize the characteristics of bugs in quantum programs and provide a basis for studying testing and debugging quantum programs.
The focus of Part I of this monograph has been on both the fundamental properties, graph topologies, and spectral representations of graphs. Part II embarks on these concepts to address the algorithmic and practical issues centered round data/signal processing on graphs, that is, the focus is on the analysis and estimation of both deterministic and random data on graphs. The fundamental ideas related to graph signals are introduced through a simple and intuitive, yet illustrative and general enough case study of multisensor temperature field estimation. The concept of systems on graph is defined using graph signal shift operators, which generalize the corresponding principles from traditional learning systems. At the core of the spectral domain representation of graph signals and systems is the Graph Discrete Fourier Transform (GDFT). The spectral domain representations are then used as the basis to introduce graph signal filtering concepts and address their design, including Chebyshev polynomial approximation series. Ideas related to the sampling of graph signals are presented and further linked with compressive sensing. Localized graph signal analysis in the joint vertex-spectral domain is referred to as the vertex-frequency analysis, since it can be considered as an extension of classical time-frequency analysis to the graph domain of a signal. Important topics related to the local graph Fourier transform (LGFT) are covered, together with its various forms including the graph spectral and vertex domain windows and the inversion conditions and relations. A link between the LGFT with spectral varying window and the spectral graph wavelet transform (SGWT) is also established. Realizations of the LGFT and SGWT using polynomial (Chebyshev) approximations of the spectral functions are further considered. Finally, energy versions of the vertex-frequency representations are introduced.
Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.