In this work, we consider the performance of using a quantum algorithm to predict a result for a binary classification problem if a machine learning model is an ensemble from any simple classifiers. Such an approach is faster than classical prediction and uses quantum and classical computing, but it is based on a probabilistic algorithm. Let $N$ be a number of classifiers from an ensemble model and $O(T)$ be the running time of prediction on one classifier. In classical case, an ensemble model gets answers from each classifier and "averages" the result. The running time in classical case is $O\left( N \cdot T \right)$. We propose an algorithm which works in $O\left(\sqrt{N} \cdot T\right)$.
In this work a quantum analogue of Bayesian statistical inference is considered. Based on the notion of instrument, we propose a sequential measurement scheme from which observations needed for statistical inference are obtained. We further put forward a quantum analogue of Bayes rule, which states how the prior normal state of a quantum system updates under those observations. We next generalize the fundamental notions and results of Bayesian statistics according to the quantum Bayes rule. It is also note that our theory retains the classical one as its special case. Finally, we investigate the limit of posterior normal state as the number of observations tends to infinity.
When presented with a binary classification problem where the data exhibits severe class imbalance, most standard predictive methods may fail to accurately model the minority class. We present a model based on Generative Adversarial Networks which uses additional regularization losses to map majority samples to corresponding synthetic minority samples. This translation mechanism encourages the synthesized samples to be close to the class boundary. Furthermore, we explore a selection criterion to retain the most useful of the synthesized samples. Experimental results using several downstream classifiers on a variety of tabular class-imbalanced datasets show that the proposed method improves average precision when compared to alternative re-weighting and oversampling techniques.
Let ${\mathcal M}\subset {\mathbb R}^n$ be a $C^2$-smooth compact submanifold of dimension $d$. Assume that the volume of ${\mathcal M}$ is at most $V$ and the reach (i.e. the normal injectivity radius) of ${\mathcal M}$ is greater than $\tau$. Moreover, let $\mu$ be a probability measure on ${\mathcal M}$ whose density on ${\mathcal M}$ is a strictly positive Lipschitz-smooth function. Let $x_j\in {\mathcal M}$, $j=1,2,\dots,N$ be $N$ independent random samples from distribution $\mu$. Also, let $\xi_j$, $j=1,2,\dots, N$ be independent random samples from a Gaussian random variable in ${\mathbb R}^n$ having covariance $\sigma^2I$, where $\sigma$ is less than a certain specified function of $d, V$ and $\tau$. We assume that we are given the data points $y_j=x_j+\xi_j,$ $j=1,2,\dots,N$, modelling random points of ${\mathcal M}$ with measurement noise. We develop an algorithm which produces from these data, with high probability, a $d$ dimensional submanifold ${\mathcal M}_o\subset {\mathbb R}^n$ whose Hausdorff distance to ${\mathcal M}$ is less than $Cd\sigma^2/\tau$ and whose reach is greater than $c{\tau}/d^6$ with universal constants $C,c > 0$. The number $N$ of random samples required depends almost linearly on $n$, polynomially on $\sigma^{-1}$ and exponentially on $d$.
Inspired by Hosoyamada et al.'s work [14], we propose a new quantum meet-in-the-middle (QMITM) attack on $r$-round ($r \ge 7$) Feistel construction to reduce the time complexity. Similar to Hosoyamada et al.'s work, our attack on 7-round Feistel is also based on Guo et al.'s classical meet-in-the-middle (MITM) attack [13]. The classic MITM attack consumes a lot of time mainly in three aspects: construct the lookup table, query data and find a match. Therefore, parallel Grover search processors are used to reduce the time of constructing the lookup table. And we adjust the truncated differentials of the 5-round distinguisher proposed by Guo et al. to balance the complexities between constructing the lookup table and querying data. Finally, we introduce a quantum claw finding algorithm to find a match for reducing time. The subkeys can be recovered by this match. Furthermore, for $r$-round ($r > 7$) Feistel construction, we treat the above attack on the first 7 rounds as an inner loop and use Grover's algorithm to search the last $r-7$ rounds of subkeys as an outer loop. In summary, the total time complexity of our attack on $r$-round ($r \ge 7$) is only $O(2^{2n/3+(r-7)n/4})$ less than classical and quantum attacks. Moreover, our attack belongs to Q1 model and is more practical than other quantum attacks.
Existing inferential methods for small area data involve a trade-off between maintaining area-level frequentist coverage rates and improving inferential precision via the incorporation of indirect information. In this article, we propose a method to obtain an area-level prediction region for a future observation which mitigates this trade-off. The proposed method takes a conformal prediction approach in which the conformity measure is the posterior predictive density of a working model that incorporates indirect information. The resulting prediction region has guaranteed frequentist coverage regardless of the working model, and, if the working model assumptions are accurate, the region has minimum expected volume compared to other regions with the same coverage rate. When constructed under a normal working model, we prove such a prediction region is an interval and construct an efficient algorithm to obtain the exact interval. We illustrate the performance of our method through simulation studies and an application to EPA radon survey data.
Recent decades, the emergence of numerous novel algorithms makes it a gimmick to propose an intelligent optimization system based on metaphor, and hinders researchers from exploring the essence of search behavior in algorithms. However, it is difficult to directly discuss the search behavior of an intelligent optimization algorithm, since there are so many kinds of intelligent schemes. To address this problem, an intelligent optimization system is regarded as a simulated physical optimization system in this paper. The dynamic search behavior of such a simplified physical optimization system are investigated with quantum theory. To achieve this goal, the Schroedinger equation is employed as the dynamics equation of the optimization algorithm, which is used to describe dynamic search behaviours in the evolution process with quantum theory. Moreover, to explore the basic behaviour of the optimization system, the optimization problem is assumed to be decomposed and approximated. Correspondingly, the basic search behaviour is derived, which constitutes the basic iterative process of a simple optimization system. The basic iterative process is compared with some classical bare-bones schemes to verify the similarity of search behavior under different metaphors. The search strategies of these bare bones algorithms are analyzed through experiments.
After spending 9 years in Quantum Computing and given the impending timeline of developing good quality quantum processing units, it is the moment to rethink the approach to advance quantum computing research. Rather than waiting for quantum hardware technologies to mature, we need to start assessing in tandem the impact of the occurrence of quantum computing in various scientific fields. However, for this purpose, we need to use a complementary but quite different approach than proposed by the NISQ vision, which is heavily focused on and burdened by the engineering challenges. That is why we propose and advocate the PISQ-approach: Perfect Intermediate-Scale Quantum computing based on the already known concept of perfect qubits. This will allow researchers to focus much more on the development of new applications by defining the algorithms in terms of perfect qubits and evaluating them on quantum computing simulators that are executed on supercomputers. It is not a long-term solution but it will allow universities to currently develop research on quantum logic and algorithms and companies can already start developing their internal know-how on quantum solutions.
Learning accurate classifiers for novel categories from very few examples, known as few-shot image classification, is a challenging task in statistical machine learning and computer vision. The performance in few-shot classification suffers from the bias in the estimation of classifier parameters; however, an effective underlying bias reduction technique that could alleviate this issue in training few-shot classifiers has been overlooked. In this work, we demonstrate the effectiveness of Firth bias reduction in few-shot classification. Theoretically, Firth bias reduction removes the $O(N^{-1})$ first order term from the small-sample bias of the Maximum Likelihood Estimator. Here we show that the general Firth bias reduction technique simplifies to encouraging uniform class assignment probabilities for multinomial logistic classification, and almost has the same effect in cosine classifiers. We derive an easy-to-implement optimization objective for Firth penalized multinomial logistic and cosine classifiers, which is equivalent to penalizing the cross-entropy loss with a KL-divergence between the uniform label distribution and the predictions. Then, we empirically evaluate that it is consistently effective across the board for few-shot image classification, regardless of (1) the feature representations from different backbones, (2) the number of samples per class, and (3) the number of classes. Finally, we show the robustness of Firth bias reduction, in the case of imbalanced data distribution. Our implementation is available at //github.com/ehsansaleh/firth_bias_reduction
This paper proposes an active learning algorithm for solving regression and classification problems based on inverse-distance weighting functions for selecting the feature vectors to query. The algorithm has the following features: (i) supports both pool-based and population-based sampling; (ii) is independent of the type of predictor used; (iii) can handle known and unknown constraints on the queryable feature vectors; and (iv) can run either sequentially, or in batch mode, depending on how often the predictor is retrained. The method's potential is shown in numerical tests on illustrative synthetic problems and real-world regression and classification datasets from the UCI repository. A Python implementation of the algorithm that we call IDEAL (Inverse-Distance based Exploration for Active Learning), is available at \url{//cse.lab.imtlucca.it/~bemporad/ideal}.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.