亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study a class of special linear codes involving their parameters, weight distributions, self-orthogonal properties, deep holes, and the existence of error-correcting pairs. We prove that such codes must be maximum distance separable (MDS) codes or near MDS codes and completely determine their weight distributions with the help of the solutions to some subset sum problems. Based on the Schur method, we show that such codes are not equivalent to generalized Reed-Solomon (GRS) codes. A sufficient and necessary condition for such codes to be self-orthogonal is also characterized. Based on this condition, we further deduce that there are no self-dual codes in this class of linear codes and explicitly construct two classes of almost self-dual codes. Additionally, we find a class of deep holes of such codes and determine the existence of their error-correcting pairs in most cases, which also reveal more connections between such codes and GRS codes.

相關內容

The purpose of this paper is to employ the language of Cartan moving frames to study the geometry of the data manifolds and its Riemannian structure, via the data information metric and its curvature at data points. Using this framework and through experiments, explanations on the response of a neural network are given by pointing out the output classes that are easily reachable from a given input. This emphasizes how the proposed mathematical relationship between the output of the network and the geometry of its inputs can be exploited as an explainable artificial intelligence tool.

In the context of Discontinuous Galerkin methods, we study approximations of nonlinear variational problems associated with convex energies. We propose element-wise nonconforming finite element methods to discretize the continuous minimisation problem. Using $\Gamma$-convergence arguments we show that the discrete minimisers converge to the unique minimiser of the continuous problem as the mesh parameter tends to zero, under the additional contribution of appropriately defined penalty terms at the level of the discrete energies. We finally substantiate the feasibility of our methods by numerical examples.

In this paper, we study the Hermitian hulls of generalized Reed-Solomon (GRS) codes over finite fields. For a given class of GRS codes, by extending the length, increasing the dimension, and extending the length and increasing the dimension at the same time, we obtain three classes of GRS codes with Hermitian hulls of arbitrary dimensions. Furthermore, based on some known $q^2$-ary Hermitian self-orthogonal GRS codes with dimension $q-1$, we obtain several classes of $q^2$-ary maximum distance separable (MDS) codes with Hermitian hulls of arbitrary dimensions. It is worth noting that the dimension of these MDS codes can be taken from $q$ to $\frac{n}{2}$, and the parameters of these MDS codes can be more flexible by propagation rules. As an application, we derive three new propagation rules for MDS entanglement-assisted quantum error correction codes (EAQECCs) constructed from GRS codes. Then, from the presently known GRS codes with Hermitian hulls, we can directly obtain many MDS EAQECCs with more flexible parameters. Finally, we present several new classes of (MDS) EAQECCs with flexible parameters, and the distance of these codes can be taken from $q+1$ to $\frac{n+2}{2}$.

In this paper, we give a generalization on the error correcting capability of twisted centralizer codes obtained from a fixed rank 1 matrix. In particular, we fix the combinatorial matrix which is obtained by getting the linear combination of the matrix whose all entries are 1 and the identity matrix of order n. Results reveal that such codes have a dimension 1 for any fixed combinatorial matrix and constant a hence having a relatively low information rate due to the way its codewords are constructed, but are found to be maximum distance separable codes.

For the distributions of finitely many binary random variables, we study the interaction of restrictions of the supports with conditional independence constraints. We prove a generalization of the Hammersley-Clifford theorem for distributions whose support is a natural distributive lattice: that is, any distribution which has natural lattice support and satisfies the pairwise Markov statements of a graph must factor according to the graph. We also show a connection to the Hibi ideals of lattices.

In this article, we develop an asymptotic method for constructing confidence regions for the set of all linear subspaces arising from PCA, from which we derive hypothesis tests on this set. Our method is based on the geometry of Riemannian manifolds with which some sets of linear subspaces are endowed.

In this paper we build a joint model which can accommodate for binary, ordinal and continuous responses, by assuming that the errors of the continuous variables and the errors underlying the ordinal and binary outcomes follow a multivariate normal distribution. We employ composite likelihood methods to estimate the model parameters and use composite likelihood inference for model comparison and uncertainty quantification. The complimentary R package mvordnorm implements estimation of this model using composite likelihood methods and is available for download from Github. We present two use-cases in the area of risk management to illustrate our approach.

In this paper, we present a theoretical and computational workflow for the non-parametric Bayesian inference of drift and diffusion functions of autonomous diffusion processes. We base the inference on the partial differential equations arising from the infinitesimal generator of the underlying process. Following a problem formulation in the infinite-dimensional setting, we discuss optimization- and sampling-based solution methods. As preliminary results, we showcase the inference of a single-scale, as well as a multiscale process from trajectory data.

In this paper, we explore a multi-task semantic communication (SemCom) system for distributed sources, extending the existing focus on collaborative single-task execution. We build on the cooperative multi-task processing introduced in [1], which divides the encoder into a common unit (CU) and multiple specific units (SUs). While earlier studies in multi-task SemCom focused on full observation settings, our research explores a more realistic case where only distributed partial observations are available, such as in a production line monitored by multiple sensing nodes. To address this, we propose an SemCom system that supports multi-task processing through cooperation on the transmitter side via split structure and collaboration on the receiver side. We have used an information-theoretic perspective with variational approximations for our end-to-end data-driven approach. Simulation results demonstrate that the proposed cooperative and collaborative multi-task (CCMT) SemCom system significantly improves task execution accuracy, particularly in complex datasets, if the noise introduced from the communication channel is not limiting the task performance too much. Our findings contribute to a more general SemCom framework capable of handling distributed sources and multiple tasks simultaneously, advancing the applicability of SemCom systems in real-world scenarios.

Reminiscence, the act of revisiting past memories, is crucial for self-reflection and social interaction, significantly enhancing psychological well-being, life satisfaction, and self-identity among older adults. In HCI and CSCW, there is growing interest in leveraging technology to support reminiscence for older adults. However, understanding how older adults actively use technologies for realistic and practical reminiscence in their daily lives remains limited. This paper addresses this gap by providing an in-depth, empirical understanding of technology-mediated, photo-based reminiscence among older adults. Through a two-part study involving 20 older adults, we conducted semi-structured interviews and co-design sessions to explore their use and vision of digital technologies for photo-based reminiscence activities. Based on these insights, we propose design implications to make future reminiscence technologies more accessible and empowering for older adults.

北京阿比特科技有限公司