亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The first step to apply deep learning techniques for symbolic music understanding is to transform musical pieces (mainly in MIDI format) into sequences of predefined tokens like note pitch, note velocity, and chords. Subsequently, the sequences are fed into a neural sequence model to accomplish specific tasks. Music sequences exhibit strong correlations between adjacent elements, making them prime candidates for N-gram techniques from Natural Language Processing (NLP). Consider classical piano music: specific melodies might recur throughout a piece, with subtle variations each time. In this paper, we propose a novel method, NG-Midiformer, for understanding symbolic music sequences that leverages the N-gram approach. Our method involves first processing music pieces into word-like sequences with our proposed unsupervised compoundation, followed by using our N-gram Transformer encoder, which can effectively incorporate N-gram information to enhance the primary encoder part for better understanding of music sequences. The pre-training process on large-scale music datasets enables the model to thoroughly learn the N-gram information contained within music sequences, and subsequently apply this information for making inferences during the fine-tuning stage. Experiment on various datasets demonstrate the effectiveness of our method and achieved state-of-the-art performance on a series of music understanding downstream tasks. The code and model weights will be released at //github.com/CinqueOrigin/NG-Midiformer.

相關內容

Denoising diffusion probabilistic models (DDPMs) have recently taken the field of generative modeling by storm, pioneering new state-of-the-art results in disciplines such as computer vision and computational biology for diverse tasks ranging from text-guided image generation to structure-guided protein design. Along this latter line of research, methods have recently been proposed for generating 3D molecules using equivariant graph neural networks (GNNs) within a DDPM framework. However, such methods are unable to learn important geometric and physical properties of 3D molecules during molecular graph generation, as they adopt molecule-agnostic and non-geometric GNNs as their 3D graph denoising networks, which negatively impacts their ability to effectively scale to datasets of large 3D molecules. In this work, we address these gaps by introducing the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation, which outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings for the QM9 dataset as well as for the larger GEOM-Drugs dataset. Importantly, we demonstrate that the geometry-complete denoising process GCDM learns for 3D molecule generation allows the model to generate realistic and stable large molecules at the scale of GEOM-Drugs, whereas previous methods fail to do so with the features they learn. Additionally, we show that extensions of GCDM can not only effectively design 3D molecules for specific protein pockets but also that GCDM's geometric features can effectively be repurposed to directly optimize the geometry and chemical composition of existing 3D molecules for specific molecular properties, demonstrating new, real-world versatility of molecular diffusion models. Our source code and data are freely available at //github.com/BioinfoMachineLearning/Bio-Diffusion.

We present a novel algorithm for parameter learning in generic deep generative models that builds upon the predictive coding (PC) framework of computational neuroscience. Our approach modifies the standard PC algorithm to bring performance on-par and exceeding that obtained from standard variational auto-encoder (VAE) training. By injecting Gaussian noise into the PC inference procedure we re-envision it as an overdamped Langevin sampling, which facilitates optimisation with respect to a tight evidence lower bound (ELBO). We improve the resultant encoder-free training method by incorporating an encoder network to provide an amortised warm-start to our Langevin sampling and test three different objectives for doing so. Finally, to increase robustness to the sampling step size and reduce sensitivity to curvature, we validate a lightweight and easily computable form of preconditioning, inspired by Riemann Manifold Langevin and adaptive optimizers from the SGD literature. We compare against VAEs by training like-for-like generative models using our technique against those trained with standard reparameterisation-trick-based ELBOs. We observe our method out-performs or matches performance across a number of metrics, including sample quality, while converging in a fraction of the number of SGD training iterations.

Due to the inability to receive signals from the Global Navigation Satellite System (GNSS) in extreme conditions, achieving accurate and robust navigation for Unmanned Aerial Vehicles (UAVs) is a challenging task. Recently emerged, vision-based navigation has been a promising and feasible alternative to GNSS-based navigation. However, existing vision-based techniques are inadequate in addressing flight deviation caused by environmental disturbances and inaccurate position predictions in practical settings. In this paper, we present a novel angle robustness navigation paradigm to deal with flight deviation in point-to-point navigation tasks. Additionally, we propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module to accurately predict direction angles for high-precision navigation. To evaluate the vision-based navigation methods, we collect a new dataset termed as UAV_AR368. Furthermore, we design the Simulation Flight Testing Instrument (SFTI) using Google Earth to simulate different flight environments, thereby reducing the expenses associated with real flight testing. Experiment results demonstrate that the proposed model outperforms the state-of-the-art by achieving improvements of 26.0% and 45.6% in the success rate of arrival under ideal and disturbed circumstances, respectively.

Efficient implementation of massive multiple-input-multiple-output (MIMO) transceivers is essential for the next-generation wireless networks. To reduce the high computational complexity of the massive MIMO transceiver, in this paper, we propose a new massive MIMO architecture using finite-precision arithmetic. First, we conduct the rounding error analysis and derive the lower bound of the achievable rate for single-input-multiple-output (SIMO) using maximal ratio combining (MRC) and multiple-input-single-output (MISO) systems using maximal ratio transmission (MRT) with finite-precision arithmetic. Then, considering the multi-user scenario, the rounding error analysis of zero-forcing (ZF) detection and precoding is derived by using the normal equations (NE) method. The corresponding lower bounds of the achievable sum rate are also derived and asymptotic analyses are presented. Built upon insights from these analyses and lower bounds, we propose a mixed-precision architecture for massive MIMO systems to offset performance gaps due to finite-precision arithmetic. The corresponding analysis of rounding errors and computational costs is obtained. Simulation results validate the derived bounds and underscore the superiority of the proposed mixed-precision architecture to the conventional structure.

Generating rich and controllable motion is a pivotal challenge in video synthesis. We propose Boximator, a new approach for fine-grained motion control. Boximator introduces two constraint types: hard box and soft box. Users select objects in the conditional frame using hard boxes and then use either type of boxes to roughly or rigorously define the object's position, shape, or motion path in future frames. Boximator functions as a plug-in for existing video diffusion models. Its training process preserves the base model's knowledge by freezing the original weights and training only the control module. To address training challenges, we introduce a novel self-tracking technique that greatly simplifies the learning of box-object correlations. Empirically, Boximator achieves state-of-the-art video quality (FVD) scores, improving on two base models, and further enhanced after incorporating box constraints. Its robust motion controllability is validated by drastic increases in the bounding box alignment metric. Human evaluation also shows that users favor Boximator generation results over the base model.

Algorithms for automatic piano transcription have improved dramatically in recent years due to new datasets and modeling techniques. Recent developments have focused primarily on adapting new neural network architectures, such as the Transformer and Perceiver, in order to yield more accurate systems. In this work, we study transcription systems from the perspective of their training data. By measuring their performance on out-of-distribution annotated piano data, we show how these models can severely overfit to acoustic properties of the training data. We create a new set of audio for the MAESTRO dataset, captured automatically in a professional studio recording environment via Yamaha Disklavier playback. Using various data augmentation techniques when training with the original and re-performed versions of the MAESTRO dataset, we achieve state-of-the-art note-onset accuracy of 88.4 F1-score on the MAPS dataset, without seeing any of its training data. We subsequently analyze these data augmentation techniques in a series of ablation studies to better understand their influence on the resulting models.

Beamforming techniques are considered as essential parts to compensate the severe path loss in millimeter-wave (mmWave) communications by adopting large antenna arrays and formulating narrow beams to obtain satisfactory received powers. However, performing accurate beam alignment over such narrow beams for efficient link configuration by traditional beam selection approaches, mainly relied on channel state information, typically impose significant latency and computing overheads, which is often infeasible in vehicle-to-vehicle (V2V) communications like highly dynamic scenarios. In contrast, utilizing out-of-band contextual information, such as vehicular position information, is a potential alternative to reduce such overheads. In this context, this paper presents a deep learning-based solution on utilizing the vehicular position information for predicting the optimal beams having sufficient mmWave received powers so that the best V2V line-of-sight links can be ensured proactively. After experimental evaluation of the proposed solution on real-world measured mmWave sensing and communications datasets, the results show that the solution can achieve up to 84.58% of received power of link status on average, which confirm a promising solution for beamforming in mmWave at 60 GHz enabled V2V communications.

Primal-dual methods have a natural application in Safe Reinforcement Learning (SRL), posed as a constrained policy optimization problem. In practice however, applying primal-dual methods to SRL is challenging, due to the inter-dependency of the learning rate (LR) and Lagrangian multipliers (dual variables) each time an embedded unconstrained RL problem is solved. In this paper, we propose, analyze and evaluate adaptive primal-dual (APD) methods for SRL, where two adaptive LRs are adjusted to the Lagrangian multipliers so as to optimize the policy in each iteration. We theoretically establish the convergence, optimality and feasibility of the APD algorithm. Finally, we conduct numerical evaluation of the practical APD algorithm with four well-known environments in Bullet-Safey-Gym employing two state-of-the-art SRL algorithms: PPO-Lagrangian and DDPG-Lagrangian. All experiments show that the practical APD algorithm outperforms (or achieves comparable performance) and attains more stable training than the constant LR cases. Additionally, we substantiate the robustness of selecting the two adaptive LRs by empirical evidence.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司