亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A graph $G$ contains a graph $H$ as an induced minor if $H$ can be obtained from $G$ by vertex deletions and edge contractions. The class of $H$-induced-minor-free graphs generalizes the class of $H$-minor-free graphs, but unlike $H$-minor-free graphs, it can contain dense graphs. We show that if an $n$-vertex $m$-edge graph $G$ does not contain a graph $H$ as an induced minor, then it has a balanced vertex separator of size $O_{H}(\sqrt{m})$, where the $O_{H}(\cdot)$-notation hides factors depending on $H$. More precisely, our upper bound for the size of the balanced separator is $O(\min(|V(H)|^2, \log n) \cdot \sqrt{|V(H)|+|E(H)|} \cdot \sqrt{m})$. We give an algorithm for finding either an induced minor model of $H$ in $G$ or such a separator in randomized polynomial-time. We apply this to obtain subexponential $2^{O_{H}(n^{2/3} \log n)}$ time algorithms on $H$-induced-minor-free graphs for a large class of problems including maximum independent set, minimum feedback vertex set, 3-coloring, and planarization. For graphs $H$ where every edge is incident to a vertex of degree at most 2, our results imply a $2^{O_{H}(n^{2/3} \log n)}$ time algorithm for testing if $G$ contains $H$ as an induced minor. Our second main result is that there exists a fixed tree $T$, so that there is no $2^{o(n/\log^3 n)}$ time algorithm for testing if a given $n$-vertex graph contains $T$ as an induced minor unless the Exponential Time Hypothesis (ETH) fails. Our reduction also gives NP-hardness, which solves an open problem asked by Fellows, Kratochv\'il, Middendorf, and Pfeiffer [Algorithmica, 1995], who asked if there exists a fixed planar graph $H$ so that testing for $H$ as an induced minor is NP-hard.

相關內容

Recent experiments have shown that, often, when training a neural network with gradient descent (GD) with a step size $\eta$, the operator norm of the Hessian of the loss grows until it approximately reaches $2/\eta$, after which it fluctuates around this value. The quantity $2/\eta$ has been called the "edge of stability" based on consideration of a local quadratic approximation of the loss. We perform a similar calculation to arrive at an "edge of stability" for Sharpness-Aware Minimization (SAM), a variant of GD which has been shown to improve its generalization. Unlike the case for GD, the resulting SAM-edge depends on the norm of the gradient. Using three deep learning training tasks, we see empirically that SAM operates on the edge of stability identified by this analysis.

Large language models (LLMs) are often augmented with tools to solve complex tasks. By generating code snippets and executing them through task-specific Application Programming Interfaces (APIs), they can offload certain functions to dedicated external modules, such as image encoding and performing calculations. However, most existing approaches to augment LLMs with tools are constrained by general-purpose APIs and lack the flexibility for tailoring them to specific tasks. In this work, we present CRAFT, a general tool creation and retrieval framework for LLMs. It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks. For each task, we collect specific code solutions by prompting GPT-4 to solve the training examples. Following a validation step ensuring the correctness, these solutions are abstracted into code snippets to enhance reusability, and deduplicated for higher quality. At inference time, the language model retrieves snippets from the toolsets and then executes them or generates the output conditioning on the retrieved snippets. Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning. Experiments on vision-language, tabular processing, and mathematical reasoning tasks show that our approach achieves substantial improvements compared to strong baselines. In addition, our in-depth analysis reveals that: (1) consistent performance improvement can be achieved by scaling up the number of tools and the capability of the backbone models; (2) each component of our approach contributes to the performance gains; (3) the created tools are well-structured and reliable with low complexity and atomicity. The code is available at \url{//github.com/lifan-yuan/CRAFT}.

We consider the classic Correlation Clustering problem: Given a complete graph where edges are labelled either $+$ or $-$, the goal is to find a partition of the vertices that minimizes the number of the \pedges across parts plus the number of the \medges within parts. Recently, Cohen-Addad, Lee and Newman [CLN22] presented a 1.994-approximation algorithm for the problem using the Sherali-Adams hierarchy, hence breaking through the integrality gap of 2 for the classic linear program and improving upon the 2.06-approximation of Chawla, Makarychev, Schramm and Yaroslavtsev [CMSY15]. We significantly improve the state-of-the-art by providing a 1.73-approximation for the problem. Our approach introduces a preclustering of Correlation Clustering instances that allows us to essentially ignore the error arising from the {\em correlated rounding} used by [CLN22]. This additional power simplifies the previous algorithm and analysis. More importantly, it enables a new {\em set-based rounding} that complements the previous roundings. A combination of these two rounding algorithms yields the improved bound.

Given an integer $k$ and a graph where every edge is colored either red or blue, the goal of the exact matching problem is to find a perfect matching with the property that exactly $k$ of its edges are red. Soon after Papadimitriou and Yannakakis (JACM 1982) introduced the problem, a randomized polynomial-time algorithm solving the problem was described by Mulmuley et al. (Combinatorica 1987). Despite a lot of effort, it is still not known today whether a deterministic polynomial-time algorithm exists. This makes the exact matching problem an important candidate to test the popular conjecture that the complexity classes P and RP are equal. In a recent article (MFCS 2022), progress was made towards this goal by showing that for bipartite graphs of bounded bipartite independence number, a polynomial time algorithm exists. In terms of parameterized complexity, this algorithm was an XP-algorithm parameterized by the bipartite independence number. In this article, we introduce novel algorithmic techniques that allow us to obtain an FPT-algorithm. If the input is a general graph we show that one can at least compute a perfect matching $M$ which has the correct number of red edges modulo 2, in polynomial time. This is motivated by our last result, in which we prove that an FPT algorithm for general graphs, parameterized by the independence number, reduces to the problem of finding in polynomial time a perfect matching $M$ with at most $k$ red edges and the correct number of red edges modulo 2.

The algorithm of Tutte for constructing convex planar straight-line drawings and the algorithm of Floater and Gotsman for constructing planar straight-line morphs are among the most popular graph drawing algorithms. Quite surprisingly, little is known about the resolution of the drawings produced by these algorithms. In this paper, focusing on maximal plane graphs, we prove tight bounds on the resolution of the planar straight-line drawings produced by Floater's algorithm, which is a broad generalization of Tutte's algorithm. Further, we use such a result in order to prove a lower bound on the resolution of the drawings of maximal plane graphs produced by Floater and Gotsman's morphing algorithm. Finally, we show that such a morphing algorithm might produce drawings with exponentially-small resolution, even when transforming drawings with polynomial resolution.

Imagine a polygon-shaped platform $P$ and only one static spotlight outside $P$; which direction should the spotlight face to light most of $P$? This problem occurs in maximising the visibility, as well as in limiting the uncertainty in localisation problems. More formally, we define the following maximum cover problem: "Given a convex polygon $P$ and a Field Of View (FOV) with a given centre and inner angle $\phi$; find the direction (an angle of rotation $\theta$) of the FOV such that the intersection between the FOV and $P$ has the maximum area". In this paper, we provide the theoretical foundation for the analysis of the maximum cover with a rotating field of view. The main challenge is that the function of the area $A_{\phi}(\theta)$, with the angle of rotation $\theta$ and the fixed inner angle $\phi$, cannot be approximated directly. We found an alternative way to express it by various compositions of a function $A_{\theta}(\phi)$ (with a restricted inner angle $\phi$ and a fixed direction $\theta$). We show that $A_{\theta}(\phi)$ has an analytical solution in the special case of a two-sector intersection and later provides a constrictive solution for the original problem. Since the optimal solution is a real number, we develop an algorithm that approximates the direction of the field of view, with precision $\varepsilon$, and complexity $\mathcal{O}(n(\log{n}+(\log{\varepsilon})/\phi))$.

The hitting set problem asks for a collection of sets over a universe $U$ to find a minimum subset of $U$ that intersects each of the given sets. It is NP-hard and equivalent to the problem set cover. We give a branch-and-bound algorithm to solve hitting set. Though it requires exponential time in the worst case, it can solve many practical instances from different domains in reasonable time. Our algorithm outperforms a modern ILP solver, the state-of-the-art for hitting set, by at least an order of magnitude on most instances.

The problem of deciding whether a biconnected planar digraph $G=(V,E)$ can be augmented to become an $st$-planar graph by adding a set of oriented edges $E' \subseteq V \times V$ is known to be NP-complete. We show that the problem is fixed-parameter tractable when parameterized by the size of the set $E'$.

We present estimators for smooth Hilbert-valued parameters, where smoothness is characterized by a pathwise differentiability condition. When the parameter space is a reproducing kernel Hilbert space, we provide a means to obtain efficient, root-n rate estimators and corresponding confidence sets. These estimators correspond to generalizations of cross-fitted one-step estimators based on Hilbert-valued efficient influence functions. We give theoretical guarantees even when arbitrary estimators of nuisance functions are used, including those based on machine learning techniques. We show that these results naturally extend to Hilbert spaces that lack a reproducing kernel, as long as the parameter has an efficient influence function. However, we also uncover the unfortunate fact that, when there is no reproducing kernel, many interesting parameters fail to have an efficient influence function, even though they are pathwise differentiable. To handle these cases, we propose a regularized one-step estimator and associated confidence sets. We also show that pathwise differentiability, which is a central requirement of our approach, holds in many cases. Specifically, we provide multiple examples of pathwise differentiable parameters and develop corresponding estimators and confidence sets. Among these examples, four are particularly relevant to ongoing research by the causal inference community: the counterfactual density function, dose-response function, conditional average treatment effect function, and counterfactual kernel mean embedding.

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.

北京阿比特科技有限公司