亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The carrier phase of cellular signals can be utilized for highly accurate positioning, with the potential for orders-of-magnitude performance improvements compared to standard time-difference-of-arrival positioning. Due to the integer ambiguities, standard performance evaluation tools such as the Cram\'er-Rao bound (CRB) are overly optimistic. In this paper, a new performance bound, called the mixed-integer CRB (MICRB) is introduced that explicitly accounts for this integer ambiguity. While computationally more complex than the standard CRB, the MICRB can accurately predict positioning performance, as verified by numerical simulations, and hence it serves as a useful guide to choose the system parameters that facilitate carrier phase positioning.

相關內容

We propose a differentiable vertex fitting algorithm that can be used for secondary vertex fitting, and that can be seamlessly integrated into neural networks for jet flavour tagging. Vertex fitting is formulated as an optimization problem where gradients of the optimized solution vertex are defined through implicit differentiation and can be passed to upstream or downstream neural network components for network training. More broadly, this is an application of differentiable programming to integrate physics knowledge into neural network models in high energy physics. We demonstrate how differentiable secondary vertex fitting can be integrated into larger transformer-based models for flavour tagging and improve heavy flavour jet classification.

Sequential transfer optimization (STO), which aims to improve the optimization performance on a task of interest by exploiting the knowledge captured from several previously-solved optimization tasks stored in a database, has been gaining increasing research attention over the years. However, despite the remarkable advances in algorithm design, the development of a systematic benchmark suite for comprehensive comparisons of STO algorithms received far less attention. Existing test problems are either simply generated by assembling other benchmark functions or extended from specific practical problems with limited scalability. The relationships between the optimal solutions of the source and target tasks in these problems are also often manually configured, limiting their ability to model different similarity relationships presented in real-world problems. Consequently, the good performance achieved by an algorithm on these problems might be biased and hard to be generalized to other problems. In light of the above, in this study, we first introduce four concepts for characterizing STO problems and present an important problem feature, namely similarity distribution, which quantitatively delineates the relationship between the optima of the source and target tasks. Then, we present the general design guidelines of STO problems and a particular STO problem generator with good scalability. Specifically, the similarity distribution of a problem can be easily customized, enabling a continuous spectrum of representation of the diverse similarity relationships of real-world problems. Lastly, a benchmark suite with 12 STO problems featured by a variety of customized similarity relationships is developed using the proposed generator. The source code of the problem generator is available at //github.com/XmingHsueh/STOP-G.

Automatic methods for early detection of breast cancer on mammography can significantly decrease mortality. Broad uptake of those methods in hospitals is currently hindered because the methods have too many constraints. They assume annotations available for single images or even regions-of-interest (ROIs), and a fixed number of images per patient. Both assumptions do not hold in a general hospital setting. Relaxing those assumptions results in a weakly supervised learning setting, where labels are available per case, but not for individual images or ROIs. Not all images taken for a patient contain malignant regions and the malignant ROIs cover only a tiny part of an image, whereas most image regions represent benign tissue. In this work, we investigate a two-level multi-instance learning (MIL) approach for case-level breast cancer prediction on two public datasets (1.6k and 5k cases) and an in-house dataset of 21k cases. Observing that breast cancer is usually only present in one side, while images of both breasts are taken as a precaution, we propose a domain-specific MIL pooling variant. We show that two-level MIL can be applied in realistic clinical settings where only case labels, and a variable number of images per patient are available. Data in realistic settings scales with continuous patient intake, while manual annotation efforts do not. Hence, research should focus in particular on unsupervised ROI extraction, in order to improve breast cancer prediction for all patients.

To imitate the ability of keeping learning of human, continual learning which can learn from a never-ending data stream has attracted more interests recently. In all settings, the online class incremental learning (OCIL), where incoming samples from data stream can be used only once, is more challenging and can be encountered more frequently in real world. Actually, all continual learning models face a stability-plasticity dilemma, where the stability means the ability to preserve old knowledge while the plasticity denotes the ability to incorporate new knowledge. Although replay-based methods have shown exceptional promise, most of them concentrate on the strategy for updating and retrieving memory to keep stability at the expense of plasticity. To strike a preferable trade-off between stability and plasticity, we propose an Adaptive Focus Shifting algorithm (AFS), which dynamically adjusts focus to ambiguous samples and non-target logits in model learning. Through a deep analysis of the task-recency bias caused by class imbalance, we propose a revised focal loss to mainly keep stability. \Rt{By utilizing a new weight function, the revised focal loss will pay more attention to current ambiguous samples, which are the potentially valuable samples to make model progress quickly.} To promote plasticity, we introduce a virtual knowledge distillation. By designing a virtual teacher, it assigns more attention to non-target classes, which can surmount overconfidence and encourage model to focus on inter-class information. Extensive experiments on three popular datasets for OCIL have shown the effectiveness of AFS. The code will be available at \url{//github.com/czjghost/AFS}.

Medical image segmentation aims to delineate the anatomical or pathological structures of interest, playing a crucial role in clinical diagnosis. A substantial amount of high-quality annotated data is crucial for constructing high-precision deep segmentation models. However, medical annotation is highly cumbersome and time-consuming, especially for medical videos or 3D volumes, due to the huge labeling space and poor inter-frame consistency. Recently, a fundamental task named Moving Object Segmentation (MOS) has made significant advancements in natural images. Its objective is to delineate moving objects from the background within image sequences, requiring only minimal annotations. In this paper, we propose the first foundation model, named iMOS, for MOS in medical images. Extensive experiments on a large multi-modal medical dataset validate the effectiveness of the proposed iMOS. Specifically, with the annotation of only a small number of images in the sequence, iMOS can achieve satisfactory tracking and segmentation performance of moving objects throughout the entire sequence in bi-directions. We hope that the proposed iMOS can help accelerate the annotation speed of experts, and boost the development of medical foundation models.

This study investigates formal-method-based trajectory optimization (TO) for bipedal locomotion, focusing on scenarios where the robot encounters external perturbations at unforeseen times. Our key research question centers around the assurance of task specification correctness and the maximization of specification robustness for a bipedal robot in the presence of external perturbations. Our contribution includes the design of an optimization-based task and motion planning framework that generates optimal control sequences with formal guarantees of external perturbation recovery. As a core component of the framework, a model predictive controller (MPC) encodes signal temporal logic (STL)-based task specifications as a cost function. In particular, we investigate challenging scenarios where the robot is subjected to lateral perturbations that increase the risk of failure due to leg self-collision. To address this, we synthesize agile and safe crossed-leg maneuvers to enhance locomotion stability. This work marks the first study to incorporate formal guarantees offered by STL into a TO for perturbation recovery of bipedal locomotion. We demonstrate the efficacy of the framework via perturbation experiments in simulations.

Solving ill-posed inverse problems requires careful formulation of prior beliefs over the signals of interest and an accurate description of their manifestation into noisy measurements. Handcrafted signal priors based on e.g. sparsity are increasingly replaced by data-driven deep generative models, and several groups have recently shown that state-of-the-art score-based diffusion models yield particularly strong performance and flexibility. In this paper, we show that the powerful paradigm of posterior sampling with diffusion models can be extended to include rich, structured, noise models. To that end, we propose a joint conditional reverse diffusion process with learned scores for the noise and signal-generating distribution. We demonstrate strong performance gains across various inverse problems with structured noise, outperforming competitive baselines that use normalizing flows and adversarial networks. This opens up new opportunities and relevant practical applications of diffusion modeling for inverse problems in the context of non-Gaussian measurement models.

Learning-based adaptive control methods hold the premise of enabling autonomous agents to reduce the effect of process variations with minimal human intervention. However, its application to autonomous underwater vehicles (AUVs) has so far been restricted due to 1) unknown dynamics under the form of sea current disturbance that we can not model properly nor measure due to limited sensor capability and 2) the nonlinearity of AUVs tasks where the controller response at some operating points must be overly conservative in order to satisfy the specification at other operating points. Deep Reinforcement Learning (DRL) can alleviates these limitations by training general-purpose neural network policies, but applications of DRL algorithms to AUVs have been restricted to simulated environments, due to their inherent high sample complexity and distribution shift problem. This paper presents a novel approach, merging the Maximum Entropy Deep Reinforcement Learning framework with a classic model-based control architecture, to formulate an adaptive controller. Within this framework, we introduce a Sim-to-Real transfer strategy comprising the following components: a bio-inspired experience replay mechanism, an enhanced domain randomisation technique, and an evaluation protocol executed on a physical platform. Our experimental assessments demonstrate that this method effectively learns proficient policies from suboptimal simulated models of the AUV, resulting in control performance 3 times higher when transferred to a real-world vehicle, compared to its model-based nonadaptive but optimal counterpart.

Traditional methods for learning with the presence of noisy labels have successfully handled datasets with artificially injected noise but still fall short of adequately handling real-world noise. With the increasing use of meta-learning in the diverse fields of machine learning, researchers leveraged auxiliary small clean datasets to meta-correct the training labels. Nonetheless, existing meta-label correction approaches are not fully exploiting their potential. In this study, we propose an Enhanced Meta Label Correction approach abbreviated as EMLC for the learning with noisy labels (LNL) problem. We re-examine the meta-learning process and introduce faster and more accurate meta-gradient derivations. We propose a novel teacher architecture tailored explicitly to the LNL problem, equipped with novel training objectives. EMLC outperforms prior approaches and achieves state-of-the-art results in all standard benchmarks. Notably, EMLC enhances the previous art on the noisy real-world dataset Clothing1M by $1.52\%$ while requiring $\times 0.5$ the time per epoch and with much faster convergence of the meta-objective when compared to the baseline approach.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

北京阿比特科技有限公司