In settings such as e-recruitment and online dating, recommendation involves distributing limited opportunities, calling for novel approaches to quantify and enforce fairness. We introduce \emph{inferiority}, a novel (un)fairness measure quantifying a user's competitive disadvantage for their recommended items. Inferiority complements \emph{envy}, a fairness notion measuring preference for others' recommendations. We combine inferiority and envy with \emph{utility}, an accuracy-related measure of aggregated relevancy scores. Since these measures are non-differentiable, we reformulate them using a probabilistic interpretation of recommender systems, yielding differentiable versions. We combine these loss functions in a multi-objective optimization problem called \texttt{FEIR} (Fairness through Envy and Inferiority Reduction), applied as post-processing for standard recommender systems. Experiments on synthetic and real-world data demonstrate that our approach improves trade-offs between inferiority, envy, and utility compared to naive recommendations and the baseline methods.
We study the problem of screening in decision-making processes under uncertainty, focusing on the impact of adding an additional screening stage, commonly known as a 'gatekeeper.' While our primary analysis is rooted in the context of job market hiring, the principles and findings are broadly applicable to areas such as educational admissions, healthcare patient selection, and financial loan approvals. The gatekeeper's role is to assess applicants' suitability before significant investments are made. Our study reveals that while gatekeepers are designed to streamline the selection process by filtering out less likely candidates, they can sometimes inadvertently affect the candidates' own decision-making process. We explore the conditions under which the introduction of a gatekeeper can enhance or impede the efficiency of these processes. Additionally, we consider how adjusting gatekeeping strategies might impact the accuracy of selection decisions. Our research also extends to scenarios where gatekeeping is influenced by historical biases, particularly in competitive settings like hiring. We discover that candidates confronted with a statistically biased gatekeeping process are more likely to withdraw from applying, thereby perpetuating the previously mentioned historical biases. The study suggests that measures such as affirmative action can be effective in addressing these biases. While centered on hiring, the insights and methodologies from our study have significant implications for a wide range of fields where screening and gatekeeping are integral.
Traffic accidents, being a significant contributor to both human casualties and property damage, have long been a focal point of research for many scholars in the field of traffic safety. However, previous studies, whether focusing on static environmental assessments or dynamic driving analyses, as well as pre-accident predictions or post-accident rule analyses, have typically been conducted in isolation. There has been a lack of an effective framework for developing a comprehensive understanding and application of traffic safety. To address this gap, this paper introduces AccidentGPT, a comprehensive accident analysis and prevention multi-modal large model. AccidentGPT establishes a multi-modal information interaction framework grounded in multi-sensor perception, thereby enabling a holistic approach to accident analysis and prevention in the field of traffic safety. Specifically, our capabilities can be categorized as follows: for autonomous driving vehicles, we provide comprehensive environmental perception and understanding to control the vehicle and avoid collisions. For human-driven vehicles, we offer proactive long-range safety warnings and blind-spot alerts while also providing safety driving recommendations and behavioral norms through human-machine dialogue and interaction. Additionally, for traffic police and management agencies, our framework supports intelligent and real-time analysis of traffic safety, encompassing pedestrian, vehicles, roads, and the environment through collaborative perception from multiple vehicles and road testing devices. The system is also capable of providing a thorough analysis of accident causes and liability after vehicle collisions. Our framework stands as the first large model to integrate comprehensive scene understanding into traffic safety studies. Project page: //accidentgpt.github.io
Medical imaging analysis has witnessed remarkable advancements even surpassing human-level performance in recent years, driven by the rapid development of advanced deep-learning algorithms. However, when the inference dataset slightly differs from what the model has seen during one-time training, the model performance is greatly compromised. The situation requires restarting the training process using both the old and the new data which is computationally costly, does not align with the human learning process, and imposes storage constraints and privacy concerns. Alternatively, continual learning has emerged as a crucial approach for developing unified and sustainable deep models to deal with new classes, tasks, and the drifting nature of data in non-stationary environments for various application areas. Continual learning techniques enable models to adapt and accumulate knowledge over time, which is essential for maintaining performance on evolving datasets and novel tasks. This systematic review paper provides a comprehensive overview of the state-of-the-art in continual learning techniques applied to medical imaging analysis. We present an extensive survey of existing research, covering topics including catastrophic forgetting, data drifts, stability, and plasticity requirements. Further, an in-depth discussion of key components of a continual learning framework such as continual learning scenarios, techniques, evaluation schemes, and metrics is provided. Continual learning techniques encompass various categories, including rehearsal, regularization, architectural, and hybrid strategies. We assess the popularity and applicability of continual learning categories in various medical sub-fields like radiology and histopathology...
The multimodal recommendation has gradually become the infrastructure of online media platforms, enabling them to provide personalized service to users through a joint modeling of user historical behaviors (e.g., purchases, clicks) and item various modalities (e.g., visual and textual). The majority of existing studies typically focus on utilizing modal features or modal-related graph structure to learn user local interests. Nevertheless, these approaches encounter two limitations: (1) Shared updates of user ID embeddings result in the consequential coupling between collaboration and multimodal signals; (2) Lack of exploration into robust global user interests to alleviate the sparse interaction problems faced by local interest modeling. To address these issues, we propose a novel Local and Global Graph Learning-guided Multimodal Recommender (LGMRec), which jointly models local and global user interests. Specifically, we present a local graph embedding module to independently learn collaborative-related and modality-related embeddings of users and items with local topological relations. Moreover, a global hypergraph embedding module is designed to capture global user and item embeddings by modeling insightful global dependency relations. The global embeddings acquired within the hypergraph embedding space can then be combined with two decoupled local embeddings to improve the accuracy and robustness of recommendations. Extensive experiments conducted on three benchmark datasets demonstrate the superiority of our LGMRec over various state-of-the-art recommendation baselines, showcasing its effectiveness in modeling both local and global user interests.
The challenge of producing accurate statistics while respecting the privacy of the individuals in a sample is an important area of research. We study minimax lower bounds for classes of differentially private estimators. In particular, we show how to characterize the power of a statistical test under differential privacy in a plug-and-play fashion by solving an appropriate transport problem. With specific coupling constructions, this observation allows us to derive Le Cam-type and Fano-type inequalities not only for regular definitions of differential privacy but also for those based on Renyi divergence. We then proceed to illustrate our results on three simple, fully worked out examples. In particular, we show that the problem class has a huge importance on the provable degradation of utility due to privacy. In certain scenarios, we show that maintaining privacy results in a noticeable reduction in performance only when the level of privacy protection is very high. Conversely, for other problems, even a modest level of privacy protection can lead to a significant decrease in performance. Finally, we demonstrate that the DP-SGLD algorithm, a private convex solver, can be employed for maximum likelihood estimation with a high degree of confidence, as it provides near-optimal results with respect to both the size of the sample and the level of privacy protection. This algorithm is applicable to a broad range of parametric estimation procedures, including exponential families.
Growing recognition of the potential for exploitation of personal data and of the shortcomings of prior privacy regimes has led to the passage of a multitude of new online privacy regulations. Some of these laws -- notably the European Union's General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA) -- have been the focus of large bodies of research by the computer science community, while others have received less attention. In this work, we analyze a set of Internet privacy and data protection regulations drawn from around the world -- both those that have frequently been studied by computer scientists and those that have not -- and develop a taxonomy of rights granted and obligations imposed by these laws. We then leverage this taxonomy to systematize 270 technical research papers published in computer science venues that investigate the impact of these laws and explore how technical solutions can complement legal protections. Finally, we analyze the results in this space through an interdisciplinary lens and make recommendations for future work at the intersection of computer science and legal privacy.
Existing committee-based Byzantine state machine replication (SMR) protocols, typically deployed in production blockchains, face a clear trade-off: (1) they either achieve linear communication cost in the happy path, but sacrifice liveness during periods of asynchrony, or (2) they are robust (progress with probability one) but pay quadratic communication cost. We believe this trade-off is unwarranted since existing linear protocols still have asymptotic quadratic cost in the worst case. We design Ditto, a Byzantine SMR protocol that enjoys the best of both worlds: optimal communication on and off the happy path (linear and quadratic, respectively) and progress guarantee under asynchrony and DDoS attacks. We achieve this by replacing the view-synchronization of partially synchronous protocols with an asynchronous fallback mechanism at no extra asymptotic cost. Specifically, we start from HotStuff, a state-of-the-art linear protocol, and gradually build Ditto. As a separate contribution and an intermediate step, we design a 2-chain version of HotStuff, Jolteon, which leverages a quadratic view-change mechanism to reduce the latency of the standard 3-chain HotStuff. We implement and experimentally evaluate all our systems. Notably, Jolteon's commit latency outperforms HotStuff by 200-300ms with varying system size. Additionally, Ditto adapts to the network and provides better performance than Jolteon under faulty conditions and better performance than VABA (a state-of-the-art asynchronous protocol) under faultless conditions. This proves our case that breaking the robustness-efficiency trade-off is in the realm of practicality.
Speech anonymization and de-identification have garnered significant attention recently, especially in the healthcare area including telehealth consultations, patient voiceprint matching, and patient real-time monitoring. Speaker identity classification tasks, which involve recognizing specific speakers from audio to learn identity features, are crucial for de-identification. Since rare studies have effectively combined speech anonymization with identity classification, we propose SAIC - an innovative pipeline for integrating Speech Anonymization and Identity Classification. SAIC demonstrates remarkable performance and reaches state-of-the-art in the speaker identity classification task on the Voxceleb1 dataset, with a top-1 accuracy of 96.1%. Although SAIC is not trained or evaluated specifically on clinical data, the result strongly proves the model's effectiveness and the possibility to generalize into the healthcare area, providing insightful guidance for future work.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.