亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work reports on a cross-sectional study on device proficiency, support availability and cybersecurity competence of older adult users of smartphones and/or tablets. Results indicate that cybersecurity competence is associated with both device proficiency and support availability although the variance explained is relatively low. There were no differences in cybersecurity competence between users and non-users of either mobile devices. Users of both smartphones and tablets had significantly higher device proficiency than non-users. Users of tablets had significantly higher support availability than non-users while there were no significant differences between users and non-users of smartphones.

相關內容

Quantum Tanner codes constitute a family of quantum low-density parity-check (LDPC) codes with good parameters, i.e., constant encoding rate and relative distance. In this article, we prove that quantum Tanner codes also facilitate single-shot quantum error correction (QEC) of adversarial noise, where one measurement round (consisting of constant-weight parity checks) suffices to perform reliable QEC even in the presence of measurement errors. We establish this result for both the sequential and parallel decoding algorithms introduced by Leverrier and Z\'emor. Furthermore, we show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round. Combined with good code parameters, the resulting constant-time overhead of QEC and robustness to (possibly time-correlated) adversarial noise make quantum Tanner codes alluring from the perspective of quantum fault-tolerant protocols.

We present a fast generative modeling approach for resistive memories that reproduces the complex statistical properties of real-world devices. To enable efficient modeling of analog circuits, the model is implemented in Verilog-A. By training on extensive measurement data of integrated 1T1R arrays (6,000 cycles of 512 devices), an autoregressive stochastic process accurately accounts for the cross-correlations between the switching parameters, while non-linear transformations ensure agreement with both cycle-to-cycle (C2C) and device-to-device (D2D) variability. Benchmarks show that this statistically comprehensive model achieves read/write throughputs exceeding those of even highly simplified and deterministic compact models.

For regression model selection via maximum likelihood estimation, we adopt a vector representation of candidate models and study the likelihood ratio confidence region for the regression parameter vector of a full model. We show that when its confidence level increases with the sample size at a certain speed, with probability tending to one, the confidence region consists of vectors representing models containing all active variables, including the true parameter vector of the full model. Using this result, we examine the asymptotic composition of models of maximum likelihood and find the subset of such models that contain all active variables. We then devise a consistent model selection criterion which has a sparse maximum likelihood estimation interpretation and certain advantages over popular information criteria.

Language models have shown effectiveness in a variety of software applications, particularly in tasks related to automatic workflow. These models possess the crucial ability to call functions, which is essential in creating AI agents. Despite the high performance of large-scale language models in cloud environments, they are often associated with concerns over privacy and cost. Current on-device models for function calling face issues with latency and accuracy. Our research presents a new method that empowers an on-device model with 2 billion parameters to surpass the performance of GPT-4 in both accuracy and latency, and decrease the context length by 95\%. When compared to Llama-7B with a RAG-based function calling mechanism, our method enhances latency by 35-fold. This method reduces the latency to levels deemed suitable for deployment across a variety of edge devices in production environments, aligning with the performance requisites for real-world applications.

We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.

In the evolving landscape of online communication, hate speech detection remains a formidable challenge, further compounded by the diversity of digital platforms. This study investigates the effectiveness and adaptability of pre-trained and fine-tuned Large Language Models (LLMs) in identifying hate speech, to address two central questions: (1) To what extent does the model performance depend on the fine-tuning and training parameters?, (2) To what extent do models generalize to cross-domain hate speech detection? and (3) What are the specific features of the datasets or models that influence the generalization potential? The experiment shows that LLMs offer a huge advantage over the state-of-the-art even without pretraining. To answer (1) we analyze 36 in-domain classifiers comprising LLaMA, Vicuna, and their variations in pre-trained and fine-tuned states across nine publicly available datasets that span a wide range of platforms and discussion forums. To answer (2), we assessed the performance of 288 out-of-domain classifiers for a given end-domain dataset. In answer to (3), ordinary least squares analyses suggest that the advantage of training with fine-grained hate speech labels is greater for smaller training datasets but washed away with the increase in dataset size. We conclude with a vision for the future of hate speech detection, emphasizing cross-domain generalizability and appropriate benchmarking practices.

Current language processing technologies allow the creation of conversational chatbot platforms. Even though artificial intelligence is still too immature to support satisfactory user experience in many mass market domains, conversational interfaces have found their way into ad hoc applications such as call centres and online shopping assistants. However, they have not been applied so far to social inclusion of elderly people, who are particularly vulnerable to the digital divide. Many of them relieve their loneliness with traditional media such as TV and radio, which are known to create a feeling of companionship. In this paper we present the EBER chatbot, designed to reduce the digital gap for the elderly. EBER reads news in the background and adapts its responses to the user's mood. Its novelty lies in the concept of "intelligent radio", according to which, instead of simplifying a digital information system to make it accessible to the elderly, a traditional channel they find familiar -- background news -- is augmented with interactions via voice dialogues. We make it possible by combining Artificial Intelligence Modelling Language, automatic Natural Language Generation and Sentiment Analysis. The system allows accessing digital content of interest by combining words extracted from user answers to chatbot questions with keywords extracted from the news items. This approach permits defining metrics of the abstraction capabilities of the users depending on a spatial representation of the word space. To prove the suitability of the proposed solution we present results of real experiments conducted with elderly people that provided valuable insights. Our approach was considered satisfactory during the tests and improved the information search capabilities of the participants.

In this article, we evaluate the first experience of computation offloading from drones to real fifth-generation (5G) operator systems, including commercial and private carrier-grade 5G networks. A follow-me drone service was implemented as a representative testbed of remote video analytics. In this application, an image of a person from a drone camera is processed at the edge, and image tracking displacements are translated into positioning commands that are sent back to the drone, so that the drone keeps the camera focused on the person at all times. The application is characterised to identify the processing and communication contributions to service delay. Then, we evaluate the latency of the application in a real non standalone 5G operator network, a standalone carrier-grade 5G private network, and, to compare these results with previous research, a Wi-Fi wireless local area network. We considered both multi-access edge computing (MEC) and cloud offloading scenarios. Onboard computing was also evaluated to assess the trade-offs with task offloading. The results determine the network configurations that are feasible for the follow-me application use case depending on the mobility of the end user, and to what extent MEC is advantageous over a state-of-the-art cloud service.

Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

小貼士
登錄享
相關主題
北京阿比特科技有限公司