亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Architected materials with their unique topology and geometry offer the potential to modify physical and mechanical properties. Machine learning can accelerate the design and optimization of these materials by identifying optimal designs and forecasting performance. This work presents LatticeML, a data-driven application for predicting the effective Young's Modulus of high-temperature graph-based architected materials. The study considers eleven graph-based lattice structures with two high-temperature alloys, Ti-6Al-4V and Inconel 625. Finite element simulations were used to compute the effective Young's Modulus of the 2x2x2 unit cell configurations. A machine learning framework was developed to predict Young's Modulus, involving data collection, preprocessing, implementation of regression models, and deployment of the best-performing model. Five supervised learning algorithms were evaluated, with the XGBoost Regressor achieving the highest accuracy (MSE = 2.7993, MAE = 1.1521, R-squared = 0.9875). The application uses the Streamlit framework to create an interactive web interface, allowing users to input material and geometric parameters and obtain predicted Young's Modulus values.

相關內容

機器學(xue)(xue)(xue)(xue)習(xi)(xi)(xi)(Machine Learning)是一個研(yan)(yan)究計(ji)算(suan)學(xue)(xue)(xue)(xue)習(xi)(xi)(xi)方(fang)(fang)(fang)法(fa)的(de)國際論(lun)壇。該雜志發(fa)表文(wen)章,報告廣泛的(de)學(xue)(xue)(xue)(xue)習(xi)(xi)(xi)方(fang)(fang)(fang)法(fa)應用于(yu)各(ge)種學(xue)(xue)(xue)(xue)習(xi)(xi)(xi)問(wen)題(ti)(ti)(ti)的(de)實(shi)(shi)質性結果。該雜志的(de)特色(se)論(lun)文(wen)描述(shu)研(yan)(yan)究的(de)問(wen)題(ti)(ti)(ti)和方(fang)(fang)(fang)法(fa),應用研(yan)(yan)究和研(yan)(yan)究方(fang)(fang)(fang)法(fa)的(de)問(wen)題(ti)(ti)(ti)。有關學(xue)(xue)(xue)(xue)習(xi)(xi)(xi)問(wen)題(ti)(ti)(ti)或(huo)方(fang)(fang)(fang)法(fa)的(de)論(lun)文(wen)通(tong)過實(shi)(shi)證(zheng)研(yan)(yan)究、理(li)論(lun)分析或(huo)與心理(li)現象的(de)比較提(ti)供了(le)堅實(shi)(shi)的(de)支(zhi)持。應用論(lun)文(wen)展示了(le)如(ru)何應用學(xue)(xue)(xue)(xue)習(xi)(xi)(xi)方(fang)(fang)(fang)法(fa)來解(jie)決重要(yao)的(de)應用問(wen)題(ti)(ti)(ti)。研(yan)(yan)究方(fang)(fang)(fang)法(fa)論(lun)文(wen)改進了(le)機器學(xue)(xue)(xue)(xue)習(xi)(xi)(xi)的(de)研(yan)(yan)究方(fang)(fang)(fang)法(fa)。所有的(de)論(lun)文(wen)都以其他(ta)研(yan)(yan)究人員可以驗證(zheng)或(huo)復制的(de)方(fang)(fang)(fang)式描述(shu)了(le)支(zhi)持證(zheng)據。論(lun)文(wen)還詳細說明了(le)學(xue)(xue)(xue)(xue)習(xi)(xi)(xi)的(de)組成部分,并(bing)討論(lun)了(le)關于(yu)知識(shi)表示和性能任務的(de)假設(she)。 官網(wang)地址:

This paper establishes a mathematical foundation for the Adam optimizer, elucidating its connection to natural gradient descent through Riemannian and information geometry. We rigorously analyze the diagonal empirical Fisher information matrix (FIM) in Adam, clarifying all detailed approximations and advocating for the use of log probability functions as loss, which should be based on discrete distributions, due to the limitations of empirical FIM. Our analysis uncovers flaws in the original Adam algorithm, leading to proposed corrections such as enhanced momentum calculations, adjusted bias corrections, adaptive epsilon, and gradient clipping. We refine the weight decay term based on our theoretical framework. Our modified algorithm, Fisher Adam (FAdam), demonstrates superior performance across diverse domains including LLM, ASR, and VQ-VAE, achieving state-of-the-art results in ASR.

The main objective of this work is to explore the possibility of incorporating radiomic information from multiple lesions into survival models. We hypothesise that when more lesions are present, their inclusion can improve model performance, and we aim to find an optimal strategy for using multiple distinct regions in modelling. The idea of using multiple regions of interest (ROIs) to extract radiomic features for predictive models has been implemented in many recent works. However, in almost all studies, analogous regions were segmented according to particular criteria for all patients -- for example, the primary tumour and peritumoral area, or subregions of the primary tumour. They can be included in a model in a straightforward way as additional features. A more interesting scenario occurs when multiple distinct ROIs are present, such as multiple lesions in a regionally disseminated cancer. Since the number of such regions may differ between patients, their inclusion in a model is non-trivial and requires additional processing steps. We proposed several methods of handling multiple ROIs representing either ROI or risk aggregation strategy, compared them to a published one, and evaluated their performance in different classes of survival models in a Monte Carlo Cross-Validation scheme. We demonstrated the effectiveness of the methods using a cohort of 115 non-small cell lung cancer patients, for whom we predicted the metastasis risk based on features extracted from PET images in original resolution or interpolated to CT image resolution. For both feature sets, incorporating all available lesions, as opposed to a singular ROI representing the primary tumour, allowed for considerable improvement of predictive ability regardless of the model.

Utilizing robotic systems in the construction industry is gaining popularity due to their build time, precision, and efficiency. In this paper, we introduce a system that allows the coordination of multiple manipulator robots for construction activities. As a case study, we chose robotic brick wall assembly. By utilizing a multi robot system where arm manipulators collaborate with each other, the entirety of a potentially long wall can be assembled simultaneously. However, the reduction of overall bricklaying time is dependent on the minimization of time required for each individual manipulator. In this paper, we execute the simulation with various placements of material and the robots base, as well as different robot configurations, to determine the optimal position of the robot and material and the best configuration for the robot. The simulation results provide users with insights into how to find the best placement of robots and raw materials for brick wall assembly.

This work is concerned with the construction and analysis of structure-preserving Galerkin methods for computing the dynamics of rotating Bose-Einstein condensate (BEC) based on the Gross-Pitaevskii equation with angular momentum rotation. Due to the presence of the rotation term, constructing finite element methods (FEMs) that preserve both mass and energy remains an unresolved issue, particularly in the context of nonconforming FEMs. Furthermore, in comparison to existing works, we provide a comprehensive convergence analysis, offering a thorough demonstration of the methods' optimal and high-order convergence properties. Finally, extensive numerical results are presented to check the theoretical analysis of the structure-preserving numerical method for rotating BEC, and the quantized vortex lattice's behavior is scrutinized through a series of numerical tests.

Probabilistic graphical models are widely used to model complex systems under uncertainty. Traditionally, Gaussian directed graphical models are applied for analysis of large networks with continuous variables as they can provide conditional and marginal distributions in closed form simplifying the inferential task. The Gaussianity and linearity assumptions are often adequate, yet can lead to poor performance when dealing with some practical applications. In this paper, we model each variable in graph G as a polynomial regression of its parents to capture complex relationships between individual variables and with a utility function of polynomial form. We develop a message-passing algorithm to propagate information throughout the network solely using moments which enables the expected utility scores to be calculated exactly. Our propagation method scales up well and enables to perform inference in terms of a finite number of expectations. We illustrate how the proposed methodology works with examples and in an application to decision problems in energy planning and for real-time clinical decision support.

Partial multi-task learning where training examples are annotated for one of the target tasks is a promising idea in remote sensing as it allows combining datasets annotated for different tasks and predicting more tasks with fewer network parameters. The na\"ive approach to partial multi-task learning is sub-optimal due to the lack of all-task annotations for learning joint representations. This paper proposes using knowledge distillation to replace the need of ground truths for the alternate task and enhance the performance of such approach. Experiments conducted on the public ISPRS 2D Semantic Labeling Contest dataset show the effectiveness of the proposed idea on partial multi-task learning for semantic tasks including object detection and semantic segmentation in aerial images.

Architectural simulators hold a vital role in RISC-V research, providing a crucial platform for workload evaluation without the need for costly physical prototypes. They serve as a dynamic environment for exploring innovative architectural concepts, enabling swift iteration and thorough analysis of performance metrics. As deep learning algorithms become increasingly pervasive, it is essential to benchmark new architectures with machine learning workloads. The diverse computational kernels used in deep learning algorithms highlight the necessity for a comprehensive compilation toolchain to map to target hardware platforms. This study evaluates the performance of a wide array of machine learning workloads on RISC-V architectures using gem5, an open-source architectural simulator. Leveraging an open-source compilation toolchain based on Multi-Level Intermediate Representation (MLIR), the research presents benchmarking results specifically focused on deep learning inference workloads. Additionally, the study sheds light on current limitations of gem5 when simulating RISC-V architectures, offering insights for future development and refinement.

Triply periodic minimal surface (TPMS) is emerging as an important way of designing microstructures. However, there has been limited use of commercial CAD/CAM/CAE software packages for TPMS design and manufacturing. This is mainly because TPMS is consistently described in the functional representation (F-rep) format, while modern CAD/CAM/CAE tools are built upon the boundary representation (B-rep) format. One possible solution to this gap is translating TPMS to STEP, which is the standard data exchange format of CAD/CAM/CAE. Following this direction, this paper proposes a new translation method with error-controlling and $C^2$ continuity-preserving features. It is based on an approximation error-driven TPMS sampling algorithm and a constrained-PIA algorithm. The sampling algorithm controls the deviation between the original and translated models. With it, an error bound of $2\epsilon$ on the deviation can be ensured if two conditions called $\epsilon$-density and $\epsilon$-approximation are satisfied. The constrained-PIA algorithm enforces $C^2$ continuity constraints during TPMS approximation, and meanwhile attaining high efficiency. A theoretical convergence proof of this algorithm is also given. The effectiveness of the translation method has been demonstrated by a series of examples and comparisons.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司