While the digitization of power distribution grids brings many benefits, it also introduces new vulnerabilities for cyber-attacks. To maintain secure operations in the emerging threat landscape, detecting and implementing countermeasures against cyber-attacks are paramount. However, due to the lack of publicly available attack data against Smart Grids (SGs) for countermeasure development, simulation-based data generation approaches offer the potential to provide the needed data foundation. Therefore, our proposed approach provides flexible and scalable replication of multi-staged cyber-attacks in an SG Co-Simulation Environment (COSE). The COSE consists of an energy grid simulator, simulators for Operation Technology (OT) devices, and a network emulator for realistic IT process networks. Focusing on defensive and offensive use cases in COSE, our simulated attacker can perform network scans, find vulnerabilities, exploit them, gain administrative privileges, and execute malicious commands on OT devices. As an exemplary countermeasure, we present a built-in Intrusion Detection System (IDS) that analyzes generated network traffic using anomaly detection with Machine Learning (ML) approaches. In this work, we provide an overview of the SG COSE, present a multi-stage attack model with the potential to disrupt grid operations, and show exemplary performance evaluations of the IDS in specific scenarios.
The rise of the new generation of cyber threats demands more sophisticated and intelligent cyber defense solutions equipped with autonomous agents capable of learning to make decisions without the knowledge of human experts. Several reinforcement learning methods (e.g., Markov) for automated network intrusion tasks have been proposed in recent years. In this paper, we introduce a new generation of network intrusion detection methods that combines a Q-learning-based reinforcement learning with a deep-feed forward neural network method for network intrusion detection. Our proposed Deep Q-Learning (DQL) model provides an ongoing auto-learning capability for a network environment that can detect different types of network intrusions using an automated trial-error approach and continuously enhance its detection capabilities. We provide the details of fine-tuning different hyperparameters involved in the DQL model for more effective self-learning. According to our extensive experimental results based on the NSL-KDD dataset, we confirm that the lower discount factor which is set as 0.001 under 250 episodes of training yields the best performance results. Our experimental results also show that our proposed DQL is highly effective in detecting different intrusion classes and outperforms other similar machine learning approaches.
Operational Technology (OT)-networks and -devices, i.e. all components used in industrial environments, were not designed with security in mind. Efficiency and ease of use were the most important design characteristics. However, due to the digitisation of industry, an increasing number of devices and industrial networks is opened up to public networks. This is beneficial for administration and organisation of the industrial environments. However, it also increases the attack surface, providing possible points of entry for an attacker. Originally, breaking into production networks meant to break an Information Technology (IT)-perimeter first, such as a public website, and then to move laterally to Industrial Control Systems (ICSs) to influence the production environment. However, many OT-devices are connected directly to the Internet, which drastically increases the threat of compromise, especially since OT-devices contain several vulnerabilities. In this work, the presence of OT-devices in the Internet is analysed from an attacker's perspective. Publicly available tools, such as the search engine Shodan and vulnerability databases, are employed to find commonly used OT-devices and map vulnerabilities to them. These findings are grouped according to country of origin, manufacturer, and number as well as severity of vulnerability. More than 13000 devices were found, almost all contained at least one vulnerability. European and Northern American countries are by far the most affected ones.
The main scope of this chapter is to serve as an introduction to face presentation attack detection, including key resources and advances in the field in the last few years. The next pages present the different presentation attacks that a face recognition system can confront, in which an attacker presents to the sensor, mainly a camera, a Presentation Attack Instrument (PAI), that is generally a photograph, a video, or a mask, to try to impersonate a genuine user. First, we make an introduction of the current status of face recognition, its level of deployment, and its challenges. In addition, we present the vulnerabilities and the possible attacks that a face recognition system may be exposed to, showing that way the high importance of presentation attack detection methods. We review different types of presentation attack methods, from simpler to more complex ones, and in which cases they could be effective. Then, we summarize the most popular presentation attack detection methods to deal with these attacks. Finally, we introduce public datasets used by the research community for exploring vulnerabilities of face biometrics to presentation attacks and developing effective countermeasures against known PAIs.
The advent of Bitcoin, and consequently Blockchain, has ushered in a new era of decentralization. Blockchain enables mutually distrusting entities to work collaboratively to attain a common objective. However, current Blockchain technologies lack scalability, which limits their use in Internet of Things (IoT) applications. Many devices on the Internet have the computational and communication capabilities to facilitate decision-making. These devices will soon be a 50 billion node network. Furthermore, new IoT business models such as Sensor-as-a-Service (SaaS) require a robust Trust and Reputation System (TRS). In this paper, we introduce an innovative distributed ledger combining Tangle and Blockchain as a TRS framework for IoT. The combination of Tangle and Blockchain provides maintainability of the former and scalability of the latter. The proposed ledger can handle large numbers of IoT device transactions and facilitates low power nodes joining and contributing. Employing a distributed ledger mitigates many threats, such as whitewashing attacks. Along with combining payments and rating protocols, the proposed approach provides cleaner data to the upper layer reputation algorithm.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.
Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.
Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.
Reinforcement learning (RL) has advanced greatly in the past few years with the employment of effective deep neural networks (DNNs) on the policy networks. With the great effectiveness came serious vulnerability issues with DNNs that small adversarial perturbations on the input can change the output of the network. Several works have pointed out that learned agents with a DNN policy network can be manipulated against achieving the original task through a sequence of small perturbations on the input states. In this paper, we demonstrate furthermore that it is also possible to impose an arbitrary adversarial reward on the victim policy network through a sequence of attacks. Our method involves the latest adversarial attack technique, Adversarial Transformer Network (ATN), that learns to generate the attack and is easy to integrate into the policy network. As a result of our attack, the victim agent is misguided to optimise for the adversarial reward over time. Our results expose serious security threats for RL applications in safety-critical systems including drones, medical analysis, and self-driving cars.