Falls present a significant global public health challenge, especially in today's aging society, underscoring the importance of developing an effective fall detection system. Non-invasive radio-frequency (RF) based fall detection has garnered substantial attention due to its wide coverage and privacy-preserving nature. Existing RF-based fall detection systems approach falls as an activity classification problem, assuming that human falls introduce reproducible patterns to the RF signals. However, we argue that falls are inherently accidental, making their impact uncontrollable and unforeseeable. We propose a fundamentally different approach to fall detection by shifting the focus from directly identifying hard-to-quantify falls to recognizing normal, repeatable human activities, thus treating falls as abnormal activities outside the normal activity distribution. We introduce a self-supervised incremental learning system incorporating FallNet, a deep neural network that employs unsupervised learning techniques. Our real-time fall detection system prototype leverages WiFi Channel State Information (CSI) sensing data and has been extensively tested with 16 human subjects.
This paper focuses on statistical modelling using additive Gaussian process (GP) models and their efficient implementation for large-scale spatio-temporal data with a multi-dimensional grid structure. To achieve this, we exploit the Kronecker product structures of the covariance kernel. While this method has gained popularity in the GP literature, the existing approach is limited to covariance kernels with a tensor product structure and does not allow flexible modelling and selection of interaction effects. This is considered an important component in spatio-temporal analysis. We extend the method to a more general class of additive GP models that accounts for main effects and selected interaction effects. Our approach allows for easy identification and interpretation of interaction effects. The proposed model is applied to the analysis of NO$_2$ concentrations during the COVID-19 lockdown in London. Our scalable method enables analysis of large-scale, hourly-recorded data collected from 59 different stations across the city, providing additional insights to findings from previous research using daily or weekly averaged data.
Recently, there has been a growing trend toward feature-based approaches for Online Action Detection (OAD). However, these approaches have limitations due to their fixed backbone design, which ignores the potential capability of a trainable backbone. In this paper, we propose the first end-to-end OAD model, termed E2E-LOAD, designed to address the major challenge of OAD, namely, long-term understanding and efficient online reasoning. Specifically, our proposed approach adopts an initial spatial model that is shared by all frames and maintains a long sequence cache for inference at a low computational cost. We also advocate an asymmetric spatial-temporal model for long-form and short-form modeling effectively. Furthermore, we propose a novel and efficient inference mechanism that accelerates heavy spatial-temporal exploration. Extensive ablation studies and experiments demonstrate the effectiveness and efficiency of our proposed method. Notably, we achieve 17.3 (+12.6) FPS for end-to-end OAD with 72.4%~(+1.2%), 90.3%~(+0.7%), and 48.1%~(+26.0%) mAP on THMOUS14, TVSeries, and HDD, respectively, which is 3x faster than previous approaches. The source code will be made publicly available.
Network intrusions are a significant problem in all industries today. A critical part of the solution is being able to effectively detect intrusions. With recent advances in artificial intelligence, current research has begun adopting deep learning approaches for intrusion detection. Current approaches for multi-class intrusion detection include the use of a deep neural network. However, it fails to take into account spatial relationships between the data objects and long term dependencies present in the dataset. The paper proposes a novel architecture to combat intrusion detection that has a Convolutional Neural Network (CNN) module, along with a Long Short Term Memory(LSTM) module and with a Support Vector Machine (SVM) classification function. The analysis is followed by a comparison of both conventional machine learning techniques and deep learning methodologies, which highlights areas that could be further explored.
Action recognition has long been a fundamental and intriguing problem in artificial intelligence. The task is challenging due to the high dimensionality nature of an action, as well as the subtle motion details to be considered. Current state-of-the-art approaches typically learn from articulated motion sequences in the straightforward 3D Euclidean space. However, the vanilla Euclidean space is not efficient for modeling important motion characteristics such as the joint-wise angular acceleration, which reveals the driving force behind the motion. Moreover, current methods typically attend to each channel equally and lack theoretical constrains on extracting task-relevant features from the input. In this paper, we seek to tackle these challenges from three aspects: (1) We propose to incorporate an acceleration representation, explicitly modeling the higher-order variations in motion. (2) We introduce a novel Stream-GCN network equipped with multi-stream components and channel attention, where different representations (i.e., streams) supplement each other towards a more precise action recognition while attention capitalizes on those important channels. (3) We explore feature-level supervision for maximizing the extraction of task-relevant information and formulate this into a mutual information loss. Empirically, our approach sets the new state-of-the-art performance on three benchmark datasets, NTU RGB+D, NTU RGB+D 120, and NW-UCLA. Our code is anonymously released at //github.com/ActionR-Group/Stream-GCN, hoping to inspire the community.
In this paper, we propose a framework for early-stage malware detection and mitigation by leveraging natural language processing (NLP) techniques and machine learning algorithms. Our primary contribution is presenting an approach for predicting the upcoming actions of malware by treating application programming interface (API) call sequences as natural language inputs and employing text classification methods, specifically a Bi-LSTM neural network, to predict the next API call. This enables proactive threat identification and mitigation, demonstrating the effectiveness of applying NLP principles to API call sequences. The Bi-LSTM model is evaluated using two datasets. %The model achieved an accuracy of 93.6\% and 88.8\% for the %first and second dataset respectively. Additionally, by modeling consecutive API calls as 2-gram and 3-gram strings, we extract new features to be further processed using a Bagging-XGBoost algorithm, effectively predicting malware presence at its early stages. The accuracy of the proposed framework is evaluated by simulations.
Recent research in computational imaging largely focuses on developing machine learning (ML) techniques for image reconstruction, which requires large-scale training datasets consisting of measurement data and ground-truth images. However, suitable experimental datasets for X-ray Computed Tomography (CT) are scarce, and methods are often developed and evaluated only on simulated data. We fill this gap by providing the community with a versatile, open 2D fan-beam CT dataset suitable for developing ML techniques for a range of image reconstruction tasks. To acquire it, we designed a sophisticated, semi-automatic scan procedure that utilizes a highly-flexible laboratory X-ray CT setup. A diverse mix of samples with high natural variability in shape and density was scanned slice-by-slice (5000 slices in total) with high angular and spatial resolution and three different beam characteristics: A high-fidelity, a low-dose and a beam-hardening-inflicted mode. In addition, 750 out-of-distribution slices were scanned with sample and beam variations to accommodate robustness and segmentation tasks. We provide raw projection data, reference reconstructions and segmentations based on an open-source data processing pipeline.
Generative AI models have made significant progress in automating the creation of 3D shapes, which has the potential to transform car design. In engineering design and optimization, evaluating engineering metrics is crucial. To make generative models performance-aware and enable them to create high-performing designs, surrogate modeling of these metrics is necessary. However, the currently used representations of three-dimensional (3D) shapes either require extensive computational resources to learn or suffer from significant information loss, which impairs their effectiveness in surrogate modeling. To address this issue, we propose a new two-dimensional (2D) representation of 3D shapes. We develop a surrogate drag model based on this representation to verify its effectiveness in predicting 3D car drag. We construct a diverse dataset of 9,070 high-quality 3D car meshes labeled by drag coefficients computed from computational fluid dynamics (CFD) simulations to train our model. Our experiments demonstrate that our model can accurately and efficiently evaluate drag coefficients with an $R^2$ value above 0.84 for various car categories. Moreover, the proposed representation method can be generalized to many other product categories beyond cars. Our model is implemented using deep neural networks, making it compatible with recent AI image generation tools (such as Stable Diffusion) and a significant step towards the automatic generation of drag-optimized car designs. We have made the dataset and code publicly available at //decode.mit.edu/projects/dragprediction/.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Deep Learning has implemented a wide range of applications and has become increasingly popular in recent years. The goal of multimodal deep learning is to create models that can process and link information using various modalities. Despite the extensive development made for unimodal learning, it still cannot cover all the aspects of human learning. Multimodal learning helps to understand and analyze better when various senses are engaged in the processing of information. This paper focuses on multiple types of modalities, i.e., image, video, text, audio, body gestures, facial expressions, and physiological signals. Detailed analysis of past and current baseline approaches and an in-depth study of recent advancements in multimodal deep learning applications has been provided. A fine-grained taxonomy of various multimodal deep learning applications is proposed, elaborating on different applications in more depth. Architectures and datasets used in these applications are also discussed, along with their evaluation metrics. Last, main issues are highlighted separately for each domain along with their possible future research directions.
Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.