Many state-of-the-art causal discovery methods aim to generate an output graph that encodes the graphical separation and connection statements of the causal graph that underlies the data-generating process. In this work, we argue that an evaluation of a causal discovery method against synthetic data should include an analysis of how well this explicit goal is achieved by measuring how closely the separations/connections of the method's output align with those of the ground truth. We show that established evaluation measures do not accurately capture the difference in separations/connections of two causal graphs, and we introduce three new measures of distance called s/c-distance, Markov distance and Faithfulness distance that address this shortcoming. We complement our theoretical analysis with toy examples, empirical experiments and pseudocode.
Keyphrase extraction (KPE) is an important task in Natural Language Processing for many scenarios, which aims to extract keyphrases that are present in a given document. Many existing supervised methods treat KPE as sequential labeling, span-level classification, or generative tasks. However, these methods lack the ability to utilize keyphrase information, which may result in biased results. In this study, we propose Diff-KPE, which leverages the supervised Variational Information Bottleneck (VIB) to guide the text diffusion process for generating enhanced keyphrase representations. Diff-KPE first generates the desired keyphrase embeddings conditioned on the entire document and then injects the generated keyphrase embeddings into each phrase representation. A ranking network and VIB are then optimized together with rank loss and classification loss, respectively. This design of Diff-KPE allows us to rank each candidate phrase by utilizing both the information of keyphrases and the document. Experiments show that Diff-KPE outperforms existing KPE methods on a large open domain keyphrase extraction benchmark, OpenKP, and a scientific domain dataset, KP20K.
For decades, aspects of the topological architecture, and of the mechanical as well as other physical behaviors of periodic lattice truss materials (PLTMs) have been massively studied. Their approximate infinite design space presents a double-edged sword, implying on one hand dramatic designability in fulfilling the requirement of various performance, but on the other hand unexpected intractability in determining the best candidate with tailoring properties. In recent years, the development of additive manufacturing and artificial intelligence spurs an explosion in the methods exploring the design space and searching its boundaries. However, regrettably, a normative description with sufficient information of PLTMs applying to machine learning has not yet been constructed, which confines the inverse design to some discrete and small scrutinized space. In the current paper, we develop a system of canonical descriptors for PLTMs, encoding not only the geometrical configurations but also mechanical properties into matrix forms to establish good quantitative correlations between structures and mechanical behaviors. The system mainly consists of the geometry matrix for the lattice node configuration, density, stretching and bending stiffness matrices for the lattice strut properties, as well as packing matrix for the principal periodic orientation. All these matrices are theoretically derived based on the intrinsic nature of PLTMs, leading to concise descriptions and sufficient information. The characteristics, including the completeness and uniqueness, of the descriptors are analyzed. In addition, we discuss how the current system of descriptors can be applied to the database construction and material discovery, and indicate the possible open problems.
In the realm of formal theorem proving, the Coq proof assistant stands out for its rigorous approach to verifying mathematical assertions and software correctness. Despite the advances in artificial intelligence and machine learning, the specialized nature of Coq syntax and semantics poses unique challenges for Large Language Models (LLMs). Addressing this gap, we present a comprehensive dataset specifically designed to enhance LLMs' proficiency in interpreting and generating Coq code. This dataset, derived from a collection of over 10,000 Coq source files, encompasses a wide array of propositions, proofs, and definitions, enriched with metadata including source references and licensing information. Our primary aim is to facilitate the development of LLMs capable of generating syntactically correct and semantically meaningful Coq constructs, thereby advancing the frontier of automated theorem proving. Initial experiments with this dataset have showcased its significant potential; models trained on this data exhibited enhanced accuracy in Coq code generation. Notably, a particular experiment revealed that a fine-tuned LLM was capable of generating 141 valid proofs for a basic lemma, highlighting the dataset's utility in facilitating the discovery of diverse and valid proof strategies. This paper discusses the dataset's composition, the methodology behind its creation, and the implications of our findings for the future of machine learning in formal verification. The dataset is accessible for further research and exploration: //huggingface.co/datasets/florath/coq-facts-props-proofs-gen0-v1
Dynamic multi-relational graphs are an expressive relational representation for data enclosing entities and relations of different types, and where relationships are allowed to vary in time. Addressing predictive tasks over such data requires the ability to find structure embeddings that capture the diversity of the relationships involved, as well as their dynamic evolution. In this work, we establish a novel class of challenging tasks for dynamic multi-relational graphs involving out-of-domain link prediction, where the relationship being predicted is not available in the input graph. We then introduce a novel Graph Neural Network model, named GOOD, designed specifically to tackle the out-of-domain generalization problem. GOOD introduces a novel design concept for multi-relation embedding aggregation, based on the idea that good representations are such when it is possible to disentangle the mixing proportions of the different relational embeddings that have produced it. We also propose five benchmarks based on two retail domains, where we show that GOOD can effectively generalize predictions out of known relationship types and achieve state-of-the-art results. Most importantly, we provide insights into problems where out-of-domain prediction might be preferred to an in-domain formulation, that is, where the relationship to be predicted has very few positive examples.
Optimal behaviours of a system to perform a specific task can be achieved by leveraging the coupling between trajectory optimization, stabilization, and design optimization. This approach is particularly advantageous for underactuated systems, which are systems that have fewer actuators than degrees of freedom and thus require for more elaborate control systems. This paper proposes a novel co-design algorithm, namely Robust Trajectory Control with Design optimization (RTC-D). An inner optimization layer (RTC) simultaneously performs direct transcription (DIRTRAN) to find a nominal trajectory while computing optimal hyperparameters for a stabilizing time-varying linear quadratic regulator (TVLQR). RTC-D augments RTC with a design optimization layer, maximizing the system's robustness through a time-varying Lyapunov-based region of attraction (ROA) analysis. This analysis provides a formal guarantee of stability for a set of off-nominal states. The proposed algorithm has been tested on two different underactuated systems: the torque-limited simple pendulum and the cart-pole. Extensive simulations of off-nominal initial conditions demonstrate improved robustness, while real-system experiments show increased insensitivity to torque disturbances.
Recently, many mesh-based graph neural network (GNN) models have been proposed for modeling complex high-dimensional physical systems. Remarkable achievements have been made in significantly reducing the solving time compared to traditional numerical solvers. These methods are typically designed to i) reduce the computational cost in solving physical dynamics and/or ii) propose techniques to enhance the solution accuracy in fluid and rigid body dynamics. However, it remains under-explored whether they are effective in addressing the challenges of flexible body dynamics, where instantaneous collisions occur within a very short timeframe. In this paper, we present Hierarchical Contact Mesh Transformer (HCMT), which uses hierarchical mesh structures and can learn long-range dependencies (occurred by collisions) among spatially distant positions of a body -- two close positions in a higher-level mesh corresponds to two distant positions in a lower-level mesh. HCMT enables long-range interactions, and the hierarchical mesh structure quickly propagates collision effects to faraway positions. To this end, it consists of a contact mesh Transformer and a hierarchical mesh Transformer (CMT and HMT, respectively). Lastly, we propose a flexible body dynamics dataset, consisting of trajectories that reflect experimental settings frequently used in the display industry for product designs. We also compare the performance of several baselines using well-known benchmark datasets. Our results show that HCMT provides significant performance improvements over existing methods. Our code is available at \url{//github.com/yuyudeep/hcmt}.
Knowledge graphs contain informative factual knowledge but are considered incomplete. To answer complex queries under incomplete knowledge, learning-based Complex Query Answering (CQA) models are proposed to directly learn from the query-answer samples to avoid the direct traversal of incomplete graph data. Existing works formulate the training of complex query answering models as multi-task learning and require a large number of training samples. In this work, we explore the compositional structure of complex queries and argue that the different logical operator types, rather than the different complex query types, are the key to improving generalizability. Accordingly, we propose a meta-learning algorithm to learn the meta-operators with limited data and adapt them to different instances of operators under various complex queries. Empirical results show that learning meta-operators is more effective than learning original CQA or meta-CQA models.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.