亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In order to meaningfully interact with the world, robot manipulators must be able to interpret objects they encounter. A critical aspect of this interpretation is pose estimation: inferring quantities that describe the position and orientation of an object in 3D space. Most existing approaches to pose estimation make limiting assumptions, often working only for specific, known object instances, or at best generalising to an object category using large pose-labelled datasets. In this work, we present a method for achieving category-level pose estimation by inspection of just a single object from a desired category. We show that we can subsequently perform accurate pose estimation for unseen objects from an inspected category, and considerably outperform prior work by exploiting multi-view correspondences. We demonstrate that our method runs in real-time, enabling a robot manipulator equipped with an RGBD sensor to perform online 6D pose estimation for novel objects. Finally, we showcase our method in a continual learning setting, with a robot able to determine whether objects belong to known categories, and if not, use active perception to produce a one-shot category representation for subsequent pose estimation.

相關內容

Real-life tools for decision-making in many critical domains are based on ranking results. With the increasing awareness of algorithmic fairness, recent works have presented measures for fairness in ranking. Many of those definitions consider the representation of different ``protected groups'', in the top-$k$ ranked items, for any reasonable $k$. Given the protected groups, confirming algorithmic fairness is a simple task. However, the groups' definitions may be unknown in advance. In this paper, we study the problem of detecting groups with biased representation in the top-$k$ ranked items, eliminating the need to pre-define protected groups. The number of such groups possible can be exponential, making the problem hard. We propose efficient search algorithms for two different fairness measures: global representation bounds, and proportional representation. Then we propose a method to explain the bias in the representations of groups utilizing the notion of Shapley values. We conclude with an experimental study, showing the scalability of our approach and demonstrating the usefulness of the proposed algorithms.

Manual assembly workers face increasing complexity in their work. Human-centered assistance systems could help, but object recognition as an enabling technology hinders sophisticated human-centered design of these systems. At the same time, activity recognition based on hand poses suffers from poor pose estimation in complex usage scenarios, such as wearing gloves. This paper presents a self-supervised pipeline for adapting hand pose estimation to specific use cases with minimal human interaction. This enables cheap and robust hand posebased activity recognition. The pipeline consists of a general machine learning model for hand pose estimation trained on a generalized dataset, spatial and temporal filtering to account for anatomical constraints of the hand, and a retraining step to improve the model. Different parameter combinations are evaluated on a publicly available and annotated dataset. The best parameter and model combination is then applied to unlabelled videos from a manual assembly scenario. The effectiveness of the pipeline is demonstrated by training an activity recognition as a downstream task in the manual assembly scenario.

With the rapid development of online social media platforms, the spread of rumours has become a critical societal concern. Current methods for rumour detection can be categorized into image-text pair classification and source-reply graph classification. In this paper, we propose a novel approach that combines multimodal source and propagation graph features for rumour classification. We introduce the Unified Multimodal Graph Transformer Network (UMGTN) which integrates Transformer encoders to fuse these features. Given that not every message in social media is associated with an image and community responses in propagation graphs do not immediately follow source messages, our aim is to build a network architecture that handles missing features such as images or replies. To enhance the model's robustness to data with missing features, we adopt a multitask learning framework that simultaneously learns representations between samples with complete and missing features. We evaluate our proposed method on four real-world datasets, augmenting them by recovering images and replies from Twitter and Weibo. Experimental results demonstrate that our UMGTN with multitask learning achieves state-of-the-art performance, improving F1-score by 1.0% to 4.0%, while maintaining detection robustness to missing features within 2% accuracy and F1-score compared to models trained without the multitask learning framework. We have made our models and datasets publicly available at: //thcheung.github.io/umgtn/.

During training, supervised object detection tries to correctly match the predicted bounding boxes and associated classification scores to the ground truth. This is essential to determine which predictions are to be pushed towards which solutions, or to be discarded. Popular matching strategies include matching to the closest ground truth box (mostly used in combination with anchors), or matching via the Hungarian algorithm (mostly used in anchor-free methods). Each of these strategies comes with its own properties, underlying losses, and heuristics. We show how Unbalanced Optimal Transport unifies these different approaches and opens a whole continuum of methods in between. This allows for a finer selection of the desired properties. Experimentally, we show that training an object detection model with Unbalanced Optimal Transport is able to reach the state-of-the-art both in terms of Average Precision and Average Recall as well as to provide a faster initial convergence. The approach is well suited for GPU implementation, which proves to be an advantage for large-scale models.

We consider estimation and inference for a regression coefficient in panels with interactive fixed effects (i.e., with a factor structure). We show that previously developed estimators and confidence intervals (CIs) might be heavily biased and size-distorted when some of the factors are weak. We propose estimators with improved rates of convergence and bias-aware CIs that are uniformly valid regardless of whether the factors are strong or not. Our approach applies the theory of minimax linear estimation to form a debiased estimate using a nuclear norm bound on the error of an initial estimate of the interactive fixed effects. We use the obtained estimate to construct a bias-aware CI taking into account the remaining bias due to weak factors. In Monte Carlo experiments, we find a substantial improvement over conventional approaches when factors are weak, with little cost to estimation error when factors are strong.

Nowadays, there is a wide availability of datasets that enable the training of common object detectors or human detectors. These come in the form of labelled real-world images and require either a significant amount of human effort, with a high probability of errors such as missing labels, or very constrained scenarios, e.g. VICON systems. On the other hand, uncommon scenarios, like aerial views, animals, like wild zebras, or difficult-to-obtain information, such as human shapes, are hardly available. To overcome this, synthetic data generation with realistic rendering technologies has recently gained traction and advanced research areas such as target tracking and human pose estimation. However, subjects such as wild animals are still usually not well represented in such datasets. In this work, we first show that a pre-trained YOLO detector can not identify zebras in real images recorded from aerial viewpoints. To solve this, we present an approach for training an animal detector using only synthetic data. We start by generating a novel synthetic zebra dataset using GRADE, a state-of-the-art framework for data generation. The dataset includes RGB, depth, skeletal joint locations, pose, shape and instance segmentations for each subject. We use this to train a YOLO detector from scratch. Through extensive evaluations of our model with real-world data from i) limited datasets available on the internet and ii) a new one collected and manually labelled by us, we show that we can detect zebras by using only synthetic data during training. The code, results, trained models, and both the generated and training data are provided as open-source at //eliabntt.github.io/grade-rr.

We explore the use of uncertainty estimation in the maritime domain, showing the efficacy on toy datasets (CIFAR10) and proving it on an in-house dataset, SHIPS. We present a method joining the intra-class uncertainty achieved using Monte Carlo Dropout, with recent discoveries in the field of outlier detection, to gain more holistic uncertainty measures. We explore the relationship between the introduced uncertainty measures and examine how well they work on CIFAR10 and in a real-life setting. Our work improves the FPR95 by 8% compared to the current highest-performing work when the models are trained without out-of-distribution data. We increase the performance by 77% compared to a vanilla implementation of the Wide ResNet. We release the SHIPS dataset and show the effectiveness of our method by improving the FPR95 by 44.2% with respect to the baseline. Our approach is model agnostic, easy to implement, and often does not require model retraining.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on answering questions that have rare answers. In addition, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, which achieves similar performance to separately optimized single-task models. Our code will be publicly available at: //github.com/j-min/VL-T5

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司