亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider speech enhancement for signals picked up in one noisy environment that must be rendered to a listener in another noisy environment. For both far-end noise reduction and near-end listening enhancement, it has been shown that excessive focus on noise suppression or intelligibility maximization may lead to excessive speech distortions and quality degradations in favorable noise conditions, where intelligibility is already at ceiling level. Recently [1,2] propose to remedy this with a minimum processing framework that either reduces noise or enhances listening a minimum amount given that a certain intelligibility criterion is still satisfied. Additionally, it has been shown that joint consideration of both environments improves speech enhancement performance. In this paper, we formulate a joint far- and near-end minimum processing framework, that improves intelligibility while limiting speech distortions in favorable noise conditions. We provide closed-form solutions to specific boundary scenarios and investigate performance for the general case using numerical optimization. We also show that concatenating existing minimum processing far- and near-end enhancement methods preserves the effects of the initial methods. Results show that the joint optimization can further improve performance compared to the concatenated approach.

相關內容

We consider unconstrained minimization of smooth convex functions. We propose a novel variational perspective using forced Euler-Lagrange equation that allows for studying high-resolution ODEs. Through this, we obtain a faster convergence rate for gradient norm minimization using Nesterov's accelerated gradient method. Additionally, we show that Nesterov's method can be interpreted as a rate-matching discretization of an appropriately chosen high-resolution ODE. Finally, using the results from the new variational perspective, we propose a stochastic method for noisy gradients. Several numerical experiments compare and illustrate our stochastic algorithm with state of the art methods.

Multimodal counterfactual reasoning is a vital yet challenging ability for AI systems. It involves predicting the outcomes of hypothetical circumstances based on vision and language inputs, which enables AI models to learn from failures and explore hypothetical scenarios. Despite its importance, there are only a few datasets targeting the counterfactual reasoning abilities of multimodal models. Among them, they only cover reasoning over synthetic environments or specific types of events (e.g. traffic collisions), making them hard to reliably benchmark the model generalization ability in diverse real-world scenarios and reasoning dimensions. To overcome these limitations, we develop a video question answering dataset, ACQUIRED: it consists of 3.9K annotated videos, encompassing a wide range of event types and incorporating both first and third-person viewpoints, which ensures a focus on real-world diversity. In addition, each video is annotated with questions that span three distinct dimensions of reasoning, including physical, social, and temporal, which can comprehensively evaluate the model counterfactual abilities along multiple aspects. We benchmark our dataset against several state-of-the-art language-only and multimodal models and experimental results demonstrate a significant performance gap (>13%) between models and humans. The findings suggest that multimodal counterfactual reasoning remains an open challenge and ACQUIRED is a comprehensive and reliable benchmark for inspiring future research in this direction.

Recently it was shown that the seminal Maddah-Ali and Niesen (MAN) coded caching scheme leaks the demand information of each user to the others. Many works have considered coded caching with demand privacy, while each non-trivial existing coded caching scheme with private demands was built on the fact that the cache information of each user is private to the others. However, most of these schemes leak the users' cache information. Consequently, in most realistic settings (e.g., video streaming), where the system is used over time with multiple sequential transmission rounds, these schemes leak demand privacy beyond the first round. This observation motivates our new formulation of coded caching with simultaneously private demands and caches. The main contribution of this paper is a new construction that generates private coded caching schemes by leveraging two-server private information retrieval (PIR) schemes. We show that if in the PIR scheme the demand is uniform over all files and the queries are independent, the resulting caching scheme is private on both the demands and on the caches. Interestingly, we propose a new construction of two-server PIR schemes in this class by leveraging coded caching schemes. By applying the seminal MAN coded caching scheme into our construction, the resulting two-server PIR scheme is proved to be order optimal. This is a second new structural result, somehow closing the loop in the relation between coded caching and PIR. Finally, to explore a broader tradeoff between cache privacy and transmission load, we relax the cache privacy constraint and introduce the definition of leakage on cache information. Then, again as a by-product of our new construction, we propose new schemes with perfect demand privacy and imperfect cache privacy that achieve an order-gain in load with respect to the scheme with perfect privacy on both demands and caches.

A structured variable selection problem is considered in which the covariates, divided into predefined groups, activate according to sparse patterns with few nonzero entries per group. Capitalizing on the concept of atomic norm, a composite norm can be properly designed to promote such exclusive group sparsity patterns. The resulting norm lends itself to efficient and flexible regularized optimization algorithms for support recovery, like the proximal algorithm. Moreover, an active set algorithm is proposed that builds the solution by successively including structure atoms into the estimated support. It is also shown that such an algorithm can be tailored to match more rigid structures than plain exclusive group sparsity. Asymptotic consistency analysis (with both the number of parameters as well as the number of groups growing with the observation size) establishes the effectiveness of the proposed solution in terms of signed support recovery under conventional assumptions. Finally, a set of numerical simulations further corroborates the results.

People are relying on AI agents to assist them with various tasks. The human must know when to rely on the agent, collaborate with the agent, or ignore its suggestions. In this work, we propose to learn rules grounded in data regions and described in natural language that illustrate how the human should collaborate with the AI. Our novel region discovery algorithm finds local regions in the data as neighborhoods in an embedding space that corrects the human prior. Each region is then described using an iterative and contrastive procedure where a large language model describes the region. We then teach these rules to the human via an onboarding stage. Through user studies on object detection and question-answering tasks, we show that our method can lead to more accurate human-AI teams. We also evaluate our region discovery and description algorithms separately.

We describe a class of tasks called decision-oriented dialogues, in which AI assistants must collaborate with one or more humans via natural language to help them make complex decisions. We formalize three domains in which users face everyday decisions: (1) choosing an assignment of reviewers to conference papers, (2) planning a multi-step itinerary in a city, and (3) negotiating travel plans for a group of friends. In each of these settings, AI assistants and users have disparate abilities that they must combine to arrive at the best decision: assistants can access and process large amounts of information, while users have preferences and constraints external to the system. For each task, we build a dialogue environment where agents receive a reward based on the quality of the final decision they reach. Using these environments, we collect human-human dialogues with humans playing the role of assistant. To compare how current AI assistants communicate in these settings, we present baselines using large language models in self-play. Finally, we highlight a number of challenges models face in decision-oriented dialogues, ranging from efficient communication to reasoning and optimization, and release our environments as a testbed for future modeling work.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.

北京阿比特科技有限公司