亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents another improved version of Plantard arithmetic that could speed up Kyber implementations on two low-end 32-bit IoT platforms (ARM Cortex-M3 and RISC-V) without SIMD extensions. Specifically, we further enlarge the input range of the Plantard arithmetic without modifying its computation steps. After tailoring the Plantard arithmetic for Kyber's modulus, we show that the input range of the Plantard multiplication by a constant is at least 2.45 times larger than the original design in TCHES2022. Then, two optimization techniques for efficient Plantard arithmetic on Cortex-M3 and RISC-V are presented. We show that the Plantard arithmetic supersedes both Montgomery and Barrett arithmetic on low-end 32-bit platforms. With the enlarged input range and the efficient implementation of the Plantard arithmetic on these platforms, we propose various optimization strategies for NTT/INTT. We minimize or entirely eliminate the modular reduction of coefficients in NTT/INTT by taking advantage of the larger input range of the proposed Plantard arithmetic on low-end 32-bit platforms. Furthermore, we propose two memory optimization strategies that reduce 23.50% to 28.31% stack usage for the speed-version Kyber implementation when compared to its counterpart on Cortex-M4. The proposed optimizations make the speed-version implementation more feasible on low-end IoT devices. Thanks to the aforementioned optimizations, our NTT/INTT implementation shows considerable speedups compared to the state-of-the-art work. Overall, we demonstrate the applicability of the speed-version Kyber implementation on memory-constrained IoT platforms and set new speed records for Kyber on these platforms.

相關內容

In this paper, we introduce two Gromov-Wasserstein-type distances on the set of Gaussian mixture models. The first one takes the form of a Gromov-Wasserstein distance between two discrete distributionson the space of Gaussian measures. This distance can be used as an alternative to Gromov-Wasserstein for applications which only require to evaluate how far the distributions are from each other but does not allow to derive directly an optimal transportation plan between clouds of points. To design a way to define such a transportation plan, we introduce another distance between measures living in incomparable spaces that turns out to be closely related to Gromov-Wasserstein. When restricting the set of admissible transportation couplings to be themselves Gaussian mixture models in this latter, this defines another distance between Gaussian mixture models that can be used as another alternative to Gromov-Wasserstein and which allows to derive an optimal assignment between points. Finally, we design a transportation plan associated with the first distance by analogy with the second, and we illustrate their practical uses on medium-to-large scale problems such as shape matching and hyperspectral image color transfer.

While Large Language Models (LLMs) have shown exceptional performance in various tasks, one of their most prominent drawbacks is generating inaccurate or false information with a confident tone. In this paper, we provide evidence that the LLM's internal state can be used to reveal the truthfulness of statements. This includes both statements provided to the LLM, and statements that the LLM itself generates. Our approach is to train a classifier that outputs the probability that a statement is truthful, based on the hidden layer activations of the LLM as it reads or generates the statement. Experiments demonstrate that given a set of test sentences, of which half are true and half false, our trained classifier achieves an average of 71\% to 83\% accuracy labeling which sentences are true versus false, depending on the LLM base model. Furthermore, we explore the relationship between our classifier's performance and approaches based on the probability assigned to the sentence by the LLM. We show that while LLM-assigned sentence probability is related to sentence truthfulness, this probability is also dependent on sentence length and the frequencies of words in the sentence, resulting in our trained classifier providing a more reliable approach to detecting truthfulness, highlighting its potential to enhance the reliability of LLM-generated content and its practical applicability in real-world scenarios.

Implicit representations like Neural Radiance Fields (NeRF) showed impressive results for photorealistic rendering of complex scenes with fine details. However, ideal or near-perfectly specular reflecting objects such as mirrors, which are often encountered in various indoor scenes, impose ambiguities and inconsistencies in the representation of the reconstructed scene leading to severe artifacts in the synthesized renderings. In this paper, we present a novel reflection tracing method tailored for the involved volume rendering within NeRF that takes these mirror-like objects into account while avoiding the cost of straightforward but expensive extensions through standard path tracing. By explicitly modeling the reflection behavior using physically plausible materials and estimating the reflected radiance with Monte-Carlo methods within the volume rendering formulation, we derive efficient strategies for importance sampling and the transmittance computation along rays from only few samples. We show that our novel method enables the training of consistent representations of such challenging scenes and achieves superior results in comparison to previous state-of-the-art approaches.

Multilingual Neural Machine Translation (MNMT) facilitates knowledge sharing but often suffers from poor zero-shot (ZS) translation qualities. While prior work has explored the causes of overall low ZS performance, our work introduces a fresh perspective: the presence of high variations in ZS performance. This suggests that MNMT does not uniformly exhibit poor ZS capability; instead, certain translation directions yield reasonable results. Through systematic experimentation involving 1,560 language directions spanning 40 languages, we identify three key factors contributing to high variations in ZS NMT performance: 1) target side translation capability 2) vocabulary overlap 3) linguistic properties. Our findings highlight that the target side translation quality is the most influential factor, with vocabulary overlap consistently impacting ZS performance. Additionally, linguistic properties, such as language family and writing system, play a role, particularly with smaller models. Furthermore, we suggest that the off-target issue is a symptom of inadequate ZS performance, emphasizing that zero-shot translation challenges extend beyond addressing the off-target problem. We release the data and models serving as a benchmark to study zero-shot for future research at //github.com/Smu-Tan/ZS-NMT-Variations

This paper aims to explore the potential of combining Deep Reinforcement Learning (DRL) with Knowledge Distillation (KD) by distilling various DRL algorithms and studying their distillation effects. By doing so, the computational burden of deep models could be reduced while maintaining the performance. The primary objective is to provide a benchmark for evaluating the performance of different DRL algorithms that have been refined using KD techniques. By distilling these algorithms, the goal is to develop efficient and fast DRL models. This research is expected to provide valuable insights that can facilitate further advancements in this promising direction. By exploring the combination of DRL and KD, this work aims to promote the development of models that require fewer GPU resources, learn more quickly, and make faster decisions in complex environments. The results of this research have the capacity to significantly advance the field of DRL and pave the way for the future deployment of resource-efficient, decision-making intelligent systems.

We show that the majority of the inference computations for large generative models such as LLaMA and OPT can be performed with both weights and activations being cast to 4 bits, in a way that leads to practical speedups while at the same time maintaining good accuracy. We achieve this via a hybrid quantization strategy called QUIK, which compresses most of the weights and activations to 4-bit, while keeping some outlier weights and activations in higher-precision. Crucially, our scheme is designed with computational efficiency in mind: we provide GPU kernels with highly-efficient layer-wise runtimes, which lead to practical end-to-end throughput improvements of up to 3.1x relative to FP16 execution. Code and models are provided at //github.com/IST-DASLab/QUIK.

Vision Foundation Models (VFMs) such as the Segment Anything Model (SAM) allow zero-shot or interactive segmentation of visual contents, thus they are quickly applied in a variety of visual scenes. However, their direct use in many Remote Sensing (RS) applications is often unsatisfactory due to the special imaging characteristics of RS images. In this work, we aim to utilize the strong visual recognition capabilities of VFMs to improve the change detection of high-resolution Remote Sensing Images (RSIs). We employ the visual encoder of FastSAM, an efficient variant of the SAM, to extract visual representations in RS scenes. To adapt FastSAM to focus on some specific ground objects in the RS scenes, we propose a convolutional adaptor to aggregate the task-oriented change information. Moreover, to utilize the semantic representations that are inherent to SAM features, we introduce a task-agnostic semantic learning branch to model the semantic latent in bi-temporal RSIs. The resulting method, SAMCD, obtains superior accuracy compared to the SOTA methods and exhibits a sample-efficient learning ability that is comparable to semi-supervised CD methods. To the best of our knowledge, this is the first work that adapts VFMs for the CD of HR RSIs.

Large Language Models (LLMs) have demonstrated remarkable performance on a wide range of Natural Language Processing (NLP) tasks, often matching or even beating state-of-the-art task-specific models. This study aims at assessing the financial reasoning capabilities of LLMs. We leverage mock exam questions of the Chartered Financial Analyst (CFA) Program to conduct a comprehensive evaluation of ChatGPT and GPT-4 in financial analysis, considering Zero-Shot (ZS), Chain-of-Thought (CoT), and Few-Shot (FS) scenarios. We present an in-depth analysis of the models' performance and limitations, and estimate whether they would have a chance at passing the CFA exams. Finally, we outline insights into potential strategies and improvements to enhance the applicability of LLMs in finance. In this perspective, we hope this work paves the way for future studies to continue enhancing LLMs for financial reasoning through rigorous evaluation.

In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司