亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While the existing literature on Differential Privacy (DP) auditing predominantly focuses on the centralized model (e.g., in auditing the DP-SGD algorithm), we advocate for extending this approach to audit Local DP (LDP). To achieve this, we introduce the LDP-Auditor framework for empirically estimating the privacy loss of locally differentially-private mechanisms. This approach leverages recent advances in designing privacy attacks against LDP frequency estimation protocols. More precisely, through the analysis of eight state-of-the-art LDP protocols we extensively explore the factors influencing the privacy audit, such as the impact of different encoding and perturbation functions. Additionally, we investigate the influence of the domain size and the theoretical privacy loss parameter $\epsilon$ on local privacy estimation. In-depth case studies are also conducted to explore specific aspects of LDP auditing, including distinguishability attacks on LDP protocols for longitudinal studies and multidimensional data. Finally, we present a notable achievement of our LDP-Auditor framework, which is the discovery of a bug in a state-of-the-art LDP Python package. Overall, our LDP-Auditor framework as well as our study offer valuable insights into the sources of randomness and information loss in LDP protocols. These contributions collectively provide a realistic understanding of the local privacy loss, which can help practitioners in selecting the LDP mechanism and privacy parameters that best align with their specific requirements.

相關內容

This study presents an in-depth analysis of the security landscape in Bluetooth Low Energy (BLE) tracking systems, with a particular emphasis on Apple AirTags and Samsung SmartTags, including their cryptographic frameworks. Our investigation traverses a wide spectrum of attack vectors such as physical tampering, firmware exploitation, signal spoofing, eavesdropping, jamming, app security flaws, Bluetooth security weaknesses, location spoofing, threats to owner devices, and cloud-related vulnerabilities. Moreover, we delve into the security implications of the cryptographic methods utilized in these systems. Our findings reveal that while BLE trackers like AirTags and SmartTags offer substantial utility, they also pose significant security risks. Notably, Apple's approach, which prioritizes user privacy by removing intermediaries, inadvertently leads to device authentication challenges, evidenced by successful AirTag spoofing instances. Conversely, Samsung SmartTags, designed to thwart beacon spoofing, raise critical concerns about cloud security and user privacy. Our analysis also highlights the constraints faced by these devices due to their design focus on battery life conservation, particularly the absence of secure boot processes, which leaves them susceptible to OS modification and a range of potential attacks. The paper concludes with insights into the anticipated evolution of these tracking systems. We predict that future enhancements will likely focus on bolstering security features, especially as these devices become increasingly integrated into the broader IoT ecosystem and face evolving privacy regulations. This shift is imperative to address the intricate balance between functionality and security in next-generation BLE tracking systems.

The growing application of artificial intelligence (AI) in the field of information retrieval (IR) affects different domains, including cultural heritage. By facilitating organisation and retrieval of large volumes of heritage-related content, AI-driven IR systems inform users about a broad range of historical phenomena, including genocides (e.g. the Holocaust). However, it is currently unclear to what degree IR systems are capable of dealing with multiple ethical challenges associated with the curation of genocide-related information. To address this question, this chapter provides an overview of ethical challenges associated with the human curation of genocide-related information using a three-part framework inspired by Belmont criteria (i.e. curation challenges associated with respect for individuals, beneficence and justice/fairness). Then, the chapter discusses to what degree the above-mentioned challenges are applicable to the ways in which AI-driven IR systems deal with genocide-related information and what can be the potential ways of bridging AI and memory ethics in this context.

This study explores the impact of peer acknowledgement on learner engagement and implicit psychological attributes in written annotations on an online social reading platform. Participants included 91 undergraduates from a large North American University. Using log file data, we analyzed the relationship between learners' received peer acknowledgement and their subsequent annotation behaviours using cross-lag regression. Higher peer acknowledgements correlate with increased initiation of annotations and responses to peer annotations. By applying text mining techniques and calculating Shapley values to analyze 1,969 social annotation entries, we identified prominent psychological themes within three dimensions (i.e., affect, cognition, and motivation) that foster peer acknowledgment in digital social annotation. These themes include positive affect, openness to learning and discussion, and expression of motivation. The findings assist educators in improving online learning communities and provide guidance to technology developers in designing effective prompts, drawing from both implicit psychological cues and explicit learning behaviours.

Graphs have emerged as a natural choice to represent and analyze the intricate patterns and rich information of the Web, enabling applications such as online page classification and social recommendation. The prevailing "pre-train, fine-tune" paradigm has been widely adopted in graph machine learning tasks, particularly in scenarios with limited labeled nodes. However, this approach often exhibits a misalignment between the training objectives of pretext tasks and those of downstream tasks. This gap can result in the "negative transfer" problem, wherein the knowledge gained from pre-training adversely affects performance in the downstream tasks. The surge in prompt-based learning within Natural Language Processing (NLP) suggests the potential of adapting a "pre-train, prompt" paradigm to graphs as an alternative. However, existing graph prompting techniques are tailored to homogeneous graphs, neglecting the inherent heterogeneity of Web graphs. To bridge this gap, we propose HetGPT, a general post-training prompting framework to improve the predictive performance of pre-trained heterogeneous graph neural networks (HGNNs). The key is the design of a novel prompting function that integrates a virtual class prompt and a heterogeneous feature prompt, with the aim to reformulate downstream tasks to mirror pretext tasks. Moreover, HetGPT introduces a multi-view neighborhood aggregation mechanism, capturing the complex neighborhood structure in heterogeneous graphs. Extensive experiments on three benchmark datasets demonstrate HetGPT's capability to enhance the performance of state-of-the-art HGNNs on semi-supervised node classification.

This survey paper delves into the burgeoning field of explainability for Large Language Models (LLMs), a critical yet challenging aspect of natural language processing. With LLMs playing a pivotal role in various applications, their "black-box" nature raises concerns about transparency and ethical use. This paper emphasizes the necessity for enhanced explainability in LLMs, addressing both the general public's trust and the technical community's need for a deeper understanding of these models. We concentrate on pre-trained Transformer-based LLMs, such as LLaMA, which present unique interpretability challenges due to their scale and complexity. Our review categorizes existing explainability methods and discusses their application in improving model transparency and reliability. We also discuss representative evaluation methods, highlighting their strengths and limitations. The goal of this survey is to bridge the gap between theoretical understanding and practical application, offering insights for future research and development in the field of LLM explainability.

In the continuously advancing AI landscape, crafting context-rich and meaningful responses via Large Language Models (LLMs) is essential. Researchers are becoming more aware of the challenges that LLMs with fewer parameters encounter when trying to provide suitable answers to open-ended questions. To address these hurdles, the integration of cutting-edge strategies, augmentation of rich external domain knowledge to LLMs, offers significant improvements. This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement, honing the proficiency of LLMs, especially in domain specific community question answering platforms like AskUbuntu, Unix, and ServerFault. We conduct experiments on various LLMs with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions. Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases. This advancement highlights the importance of pairing context rich data retrieval with LLMs, offering a renewed approach to knowledge sourcing and generation in AI systems. We also show that, due to rich contextual data retrieval, the crucial entities, along with the generated answer, remain factually coherent with the gold answer.

This study investigates various approaches to using Large Language Models (LLMs) for Text-to-SQL program synthesis, focusing on the outcomes and insights derived. Employing the popular Text-to-SQL dataset, spider, the goal was to input a natural language question along with the database schema and output the correct SQL SELECT query. The initial approach was to fine-tune a local and open-source model to generate the SELECT query. After QLoRa fine-tuning WizardLM's WizardCoder-15B model on the spider dataset, the execution accuracy for generated queries rose to a high of 61%. With the second approach, using the fine-tuned gpt-3.5-turbo-16k (Few-shot) + gpt-4-turbo (Zero-shot error correction), the execution accuracy reached a high of 82.1%. Of all the incorrect queries, most can be categorized into a seven different categories of what went wrong: selecting the wrong columns or wrong order of columns, grouping by the wrong column, predicting the wrong values in conditionals, using different aggregates than the ground truth, extra or too few JOIN clauses, inconsistencies in the Spider dataset, and lastly completely incorrect query structure. Most if not all of the queries fall into these categories and it is insightful to understanding where the faults still lie with LLM program synthesis and where they can be improved.

Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

北京阿比特科技有限公司