Retrieval-Augmented Language Modeling (RALM) by integrating large language models (LLM) with relevant documents from an external corpus is a proven method for enabling the LLM to generate information beyond the scope of its pre-training corpus. Previous work utilizing retrieved content by simply prepending it to the input poses a high runtime issue, which degrades the inference efficiency of the LLMs because they fail to use the Key-Value (KV) cache efficiently. In this paper, we propose FlashBack, a modular RALM designed to improve the inference efficiency of RALM with appending context pattern while maintaining decent performance after fine-tuning by Low-Rank Adaption. FlashBack appends retrieved documents at the end of the context for efficiently utilizing the KV cache instead of prepending them. And we introduce Marking Token as two special prompt tokens for marking the boundary of the appending context during fine-tuning. Our experiments on testing generation quality show that FlashBack can remain decent generation quality in perplexity. And the inference speed of FlashBack is up to $4\times$ faster than the prepending counterpart on a 7B LLM (Llama 2) in the runtime test. Via bypassing unnecessary re-computation, it demonstrates an advancement by achieving significantly faster inference speed, and this heightened efficiency will substantially reduce inferential cost.
Retrieval-augmented large language models (LLMs) leverage relevant content retrieved by information retrieval systems to generate correct responses, aiming to alleviate the hallucination problem. However, existing retriever-responder methods typically append relevant documents to the prompt of LLMs to perform text generation tasks without considering the interaction of fine-grained structural semantics between the retrieved documents and the LLMs. This issue is particularly important for accurate response generation as LLMs tend to "lose in the middle" when dealing with input prompts augmented with lengthy documents. In this work, we propose a new pipeline named "Reinforced Retriever-Reorder-Responder" (R$^4$) to learn document orderings for retrieval-augmented LLMs, thereby further enhancing their generation abilities while the large numbers of parameters of LLMs remain frozen. The reordering learning process is divided into two steps according to the quality of the generated responses: document order adjustment and document representation enhancement. Specifically, document order adjustment aims to organize retrieved document orderings into beginning, middle, and end positions based on graph attention learning, which maximizes the reinforced reward of response quality. Document representation enhancement further refines the representations of retrieved documents for responses of poor quality via document-level gradient adversarial learning. Extensive experiments demonstrate that our proposed pipeline achieves better factual question-answering performance on knowledge-intensive tasks compared to strong baselines across various public datasets. The source codes and trained models will be released upon paper acceptance.
Knowledge-enhanced pre-trained language models (KEPLMs) leverage relation triples from knowledge graphs (KGs) and integrate these external data sources into language models via self-supervised learning. Previous works treat knowledge enhancement as two independent operations, i.e., knowledge injection and knowledge integration. In this paper, we propose to learn Knowledge-Enhanced language representations with Hierarchical Reinforcement Learning (KEHRL), which jointly addresses the problems of detecting positions for knowledge injection and integrating external knowledge into the model in order to avoid injecting inaccurate or irrelevant knowledge. Specifically, a high-level reinforcement learning (RL) agent utilizes both internal and prior knowledge to iteratively detect essential positions in texts for knowledge injection, which filters out less meaningful entities to avoid diverting the knowledge learning direction. Once the entity positions are selected, a relevant triple filtration module is triggered to perform low-level RL to dynamically refine the triples associated with polysemic entities through binary-valued actions. Experiments validate KEHRL's effectiveness in probing factual knowledge and enhancing the model's performance on various natural language understanding tasks.
Reinforcement Learning from Human Feedback (RLHF) is a key method for aligning large language models (LLMs) with human preferences. However, current offline alignment approaches like DPO, IPO, and SLiC rely heavily on fixed preference datasets, which can lead to sub-optimal performance. On the other hand, recent literature has focused on designing online RLHF methods but still lacks a unified conceptual formulation and suffers from distribution shift issues. To address this, we establish that online LLM alignment is underpinned by bilevel optimization. By reducing this formulation to an efficient single-level first-order method (using the reward-policy equivalence), our approach generates new samples and iteratively refines model alignment by exploring responses and regulating preference labels. In doing so, we permit alignment methods to operate in an online and self-improving manner, as well as generalize prior online RLHF methods as special cases. Compared to state-of-the-art iterative RLHF methods, our approach significantly improves alignment performance on open-sourced datasets with minimal computational overhead.
Recently, large language models (LLMs) enhanced by self-reflection have achieved promising performance on machine translation. The key idea is guiding LLMs to generate translation with human-like feedback. However, existing self-reflection methods lack effective feedback information, limiting the translation performance. To address this, we introduce a DUAL-REFLECT framework, leveraging the dual learning of translation tasks to provide effective feedback, thereby enhancing the models' self-reflective abilities and improving translation performance. The application of this method across various translation tasks has proven its effectiveness in improving translation accuracy and eliminating ambiguities, especially in translation tasks with low-resource language pairs.
Large language models (LLMs) have shown remarkable performance on code generation tasks. A recent application of LLMs for code generation is iterative code repair, where a model fixes an incorrect program by rationalizing about errors and generating a new program. However, code repair is primarily studied on high-resource languages like Python, and the framework's efficacy is under-explored on low-resource languages. To apply code repair for low-resource languages, we propose Distilling Low-Resource Repairs (DistiLRR), an approach that transfers the reasoning and code generation ability from a teacher model to a student model. Our results show that DistiLRR consistently outperforms baselines on low-resource languages, but has similar performance on high-resource languages. To investigate this behavior, we perform a further analysis and find that the correlation between rationale quality and code correctness is weaker than previously perceived. We hypothesize this weakness is magnified in low-resource settings where base models lack deep knowledge of a programming language, leading to wavering benefits of code repair between high-resource and low-resource languages.
Direct preference optimization (DPO) has shown to be an effective method for large language model (LLM) alignment. Recent works have attempted to apply DPO to multimodal scenarios but have found it challenging to achieve consistent improvement. Through a comparative experiment, we identify the unconditional preference problem in multimodal preference optimization, where the model overlooks the image condition. To address this problem, we propose mDPO, a multimodal DPO objective that prevents the over-prioritization of language-only preferences by also optimizing image preference. Moreover, we introduce a reward anchor that forces the reward to be positive for chosen responses, thereby avoiding the decrease in their likelihood -- an intrinsic problem of relative preference optimization. Experiments on two multimodal LLMs of different sizes and three widely used benchmarks demonstrate that mDPO effectively addresses the unconditional preference problem in multimodal preference optimization and significantly improves model performance, particularly in reducing hallucination.
While state-of-the-art large language models (LLMs) can excel at adapting text from one style to another, current work does not address the explainability of style transfer models. Recent work has explored generating textual explanations from larger teacher models and distilling them into smaller student models. One challenge with such approach is that LLM outputs may contain errors that require expertise to correct, but gathering and incorporating expert feedback is difficult due to cost and availability. To address this challenge, we propose ICLEF, a novel human-AI collaboration approach to model distillation that incorporates scarce expert human feedback by combining in-context learning and model self-critique. We show that our method leads to generation of high-quality synthetic explainable style transfer datasets for formality (e-GYAFC) and subjective bias (e-WNC). Via automatic and human evaluation, we show that specialized student models fine-tuned on our datasets outperform generalist teacher models on the explainable style transfer task in one-shot settings, and perform competitively compared to few-shot teacher models, highlighting the quality of the data and the role of expert feedback. In an extrinsic task of authorship attribution, we show that explanations generated by smaller models fine-tuned on e-GYAFC are more predictive of authorship than explanations generated by few-shot teacher models.
The increasing size of large language models (LLMs) challenges their usage on resource-constrained platforms. For example, memory on modern GPUs is insufficient to hold LLMs that are hundreds of Gigabytes in size. Offloading is a popular method to escape this constraint by storing weights of an LLM model to host CPU memory and SSD, then loading each weight to GPU before every use. In our case study of offloaded inference, we found that due to the low bandwidth between storage devices and GPU, the latency of transferring large model weights from its offloaded location to GPU memory becomes the critical bottleneck with actual compute taking nearly 0% of runtime. To effectively reduce the weight transfer latency, we propose a novel sparse format that compresses the unstructured sparse pattern of pruned LLM weights to non-zero values with high compression ratio and low decompression overhead. Endor achieves this by expressing the positions of non-zero elements with a bitmap. Compared to offloaded inference using the popular Huggingface Accelerate, applying Endor accelerates OPT-66B by 1.70x and Llama2-70B by 1.78x. When direct weight transfer from SSD to GPU is leveraged, Endor achieves 2.25x speedup on OPT-66B and 2.37x speedup on Llama2-70B.
Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) an evolving repository of state-of-the-art adversarial prompts, which we refer to as jailbreak artifacts; (2) a jailbreaking dataset comprising 100 behaviors -- both original and sourced from prior work -- which align with OpenAI's usage policies; (3) a standardized evaluation framework at //github.com/JailbreakBench/jailbreakbench that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard at //jailbreakbench.github.io/ that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.