亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sparse LiDAR point clouds cause severe loss of detail of static structures and reduce the density of static points available for navigation. Reduced density can be detrimental to navigation under several scenarios. We observe that despite high sparsity, in most cases, the global topology of LiDAR outlining the static structures can be inferred. We utilize this property to obtain a backbone skeleton of a static LiDAR scan in the form of a single connected component that is a proxy to its global topology. We utilize the backbone to augment new points along static structures to overcome sparsity. Newly introduced points could correspond to existing static structures or to static points that were earlier obstructed by dynamic objects. To the best of our knowledge, we are the first to use this strategy for sparse LiDAR point clouds. Existing solutions close to our approach fail to identify and preserve the global static LiDAR topology and generate sub-optimal points. We propose GLiDR, a Graph Generative network that is topologically regularized using 0-dimensional Persistent Homology (PH) constraints. This enables GLiDR to introduce newer static points along a topologically consistent global static LiDAR backbone. GLiDR generates precise static points using 32x sparser dynamic scans and performs better than the baselines across three datasets. The newly introduced static points allow GLiDR to outperform LiDAR-based navigation using SLAM in several settings. GLiDR generates a valuable byproduct - an accurate binary segmentation mask of static and dynamic objects that is helpful for navigation planning and safety in constrained environments.

相關內容

Low latency is one of the most desirable features of partially synchronous Byzantine consensus protocols. Existing low-latency protocols have achieved consensus with just two communication steps by reducing the maximum number of faults the protocol can tolerate (from $f = \frac{n-1}{3}$ to $f = \frac{n+1}{5}$), \textcolor{black}{by relaxing protocol safety guarantees}, or by using trusted hardware like Trusted Execution Environment. Furthermore, these two-step protocols don't support rotating primary and low-cost view change (leader replacement), which are important features of many blockchain use cases. In this paper, we propose a protocol called VBFT which achieves consensus in just two communication steps without scarifying desirable features. In particular, VBFT tolerates $f = \frac{n-1}{3}$ faults (which is the best possible), guarantees strong safety for honest primaries, and requires no trusted hardware. Moreover, VBFT supports primary rotation and low-cost view change, thereby improving prior art on multiple axes.

Single Object Tracking in LiDAR point cloud is one of the most essential parts of environmental perception, in which small objects are inevitable in real-world scenarios and will bring a significant barrier to the accurate location. However, the existing methods concentrate more on exploring universal architectures for common categories and overlook the challenges that small objects have long been thorny due to the relative deficiency of foreground points and a low tolerance for disturbances. To this end, we propose a Siamese network-based method for small object tracking in the LiDAR point cloud, which is composed of the target-awareness prototype mining (TAPM) module and the regional grid subdivision (RGS) module. The TAPM module adopts the reconstruction mechanism of the masked decoder to learn the prototype in the feature space, aiming to highlight the presence of foreground points that will facilitate the subsequent location of small objects. Through the above prototype is capable of accentuating the small object of interest, the positioning deviation in feature maps still leads to high tracking errors. To alleviate this issue, the RGS module is proposed to recover the fine-grained features of the search region based on ViT and pixel shuffle layers. In addition, apart from the normal settings, we elaborately design a scaling experiment to evaluate the robustness of the different trackers on small objects. Extensive experiments on KITTI and nuScenes demonstrate that our method can effectively improve the tracking performance of small targets without affecting normal-sized objects.

Event cameras are bio-inspired sensors that respond to local changes in light intensity and feature low latency, high energy efficiency, and high dynamic range. Meanwhile, Spiking Neural Networks (SNNs) have gained significant attention due to their remarkable efficiency and fault tolerance. By synergistically harnessing the energy efficiency inherent in event cameras and the spike-based processing capabilities of SNNs, their integration could enable ultra-low-power application scenarios, such as action recognition tasks. However, existing approaches often entail converting asynchronous events into conventional frames, leading to additional data mapping efforts and a loss of sparsity, contradicting the design concept of SNNs and event cameras. To address this challenge, we propose SpikePoint, a novel end-to-end point-based SNN architecture. SpikePoint excels at processing sparse event cloud data, effectively extracting both global and local features through a singular-stage structure. Leveraging the surrogate training method, SpikePoint achieves high accuracy with few parameters and maintains low power consumption, specifically employing the identity mapping feature extractor on diverse datasets. SpikePoint achieves state-of-the-art (SOTA) performance on four event-based action recognition datasets using only 16 timesteps, surpassing other SNN methods. Moreover, it also achieves SOTA performance across all methods on three datasets, utilizing approximately 0.3\% of the parameters and 0.5\% of power consumption employed by artificial neural networks (ANNs). These results emphasize the significance of Point Cloud and pave the way for many ultra-low-power event-based data processing applications.

LiDAR point clouds have become the most common data source in autonomous driving. However, due to the sparsity of point clouds, accurate and reliable detection cannot be achieved in specific scenarios. Because of their complementarity with point clouds, images are getting increasing attention. Although with some success, existing fusion methods either perform hard fusion or do not fuse in a direct manner. In this paper, we propose a generic 3D detection framework called MMFusion, using multi-modal features. The framework aims to achieve accurate fusion between LiDAR and images to improve 3D detection in complex scenes. Our framework consists of two separate streams: the LiDAR stream and the camera stream, which can be compatible with any single-modal feature extraction network. The Voxel Local Perception Module in the LiDAR stream enhances local feature representation, and then the Multi-modal Feature Fusion Module selectively combines feature output from different streams to achieve better fusion. Extensive experiments have shown that our framework not only outperforms existing benchmarks but also improves their detection, especially for detecting cyclists and pedestrians on KITTI benchmarks, with strong robustness and generalization capabilities. Hopefully, our work will stimulate more research into multi-modal fusion for autonomous driving tasks.

We present a Multimodal Interlaced Transformer (MIT) that jointly considers 2D and 3D data for weakly supervised point cloud segmentation. Research studies have shown that 2D and 3D features are complementary for point cloud segmentation. However, existing methods require extra 2D annotations to achieve 2D-3D information fusion. Considering the high annotation cost of point clouds, effective 2D and 3D feature fusion based on weakly supervised learning is in great demand. To this end, we propose a transformer model with two encoders and one decoder for weakly supervised point cloud segmentation using only scene-level class tags. Specifically, the two encoders compute the self-attended features for 3D point clouds and 2D multi-view images, respectively. The decoder implements interlaced 2D-3D cross-attention and carries out implicit 2D and 3D feature fusion. We alternately switch the roles of queries and key-value pairs in the decoder layers. It turns out that the 2D and 3D features are iteratively enriched by each other. Experiments show that it performs favorably against existing weakly supervised point cloud segmentation methods by a large margin on the S3DIS and ScanNet benchmarks. The project page will be available at //jimmy15923.github.io/mit_web/.

Image-level weakly supervised semantic segmentation has received increasing attention due to its low annotation cost. Existing methods mainly rely on Class Activation Mapping (CAM) to obtain pseudo-labels for training semantic segmentation models. In this work, we are the first to demonstrate that long-tailed distribution in training data can cause the CAM calculated through classifier weights over-activated for head classes and under-activated for tail classes due to the shared features among head- and tail- classes. This degrades pseudo-label quality and further influences final semantic segmentation performance. To address this issue, we propose a Shared Feature Calibration (SFC) method for CAM generation. Specifically, we leverage the class prototypes that carry positive shared features and propose a Multi-Scaled Distribution-Weighted (MSDW) consistency loss for narrowing the gap between the CAMs generated through classifier weights and class prototypes during training. The MSDW loss counterbalances over-activation and under-activation by calibrating the shared features in head-/tail-class classifier weights. Experimental results show that our SFC significantly improves CAM boundaries and achieves new state-of-the-art performances. The project is available at //github.com/Barrett-python/SFC.

Efficient analysis of point clouds holds paramount significance in real-world 3D applications. Currently, prevailing point-based models adhere to the PointNet++ methodology, which involves embedding and abstracting point features within a sequence of spatially overlapping local point sets, resulting in noticeable computational redundancy. Drawing inspiration from the streamlined paradigm of pixel embedding followed by regional pooling in Convolutional Neural Networks (CNNs), we introduce a novel, uncomplicated yet potent architecture known as PointGL, crafted to facilitate efficient point cloud analysis. PointGL employs a hierarchical process of feature acquisition through two recursive steps. First, the Global Point Embedding leverages straightforward residual Multilayer Perceptrons (MLPs) to effectuate feature embedding for each individual point. Second, the novel Local Graph Pooling technique characterizes point-to-point relationships and abstracts regional representations through succinct local graphs. The harmonious fusion of one-time point embedding and parameter-free graph pooling contributes to PointGL's defining attributes of minimized model complexity and heightened efficiency. Our PointGL attains state-of-the-art accuracy on the ScanObjectNN dataset while exhibiting a runtime that is more than 5 times faster and utilizing only approximately 4% of the FLOPs and 30% of the parameters compared to the recent PointMLP model. The code for PointGL is available at //github.com/Roywangj/PointGL.

Extracting point correspondences from two or more views of a scene is a fundamental computer vision problem with particular importance for relative camera pose estimation and structure-from-motion. Existing local feature matching approaches, trained with correspondence supervision on large-scale datasets, obtain highly-accurate matches on the test sets. However, they do not generalise well to new datasets with different characteristics to those they were trained on, unlike classic feature extractors. Instead, they require finetuning, which assumes that ground-truth correspondences or ground-truth camera poses and 3D structure are available. We relax this assumption by removing the requirement of 3D structure, e.g., depth maps or point clouds, and only require camera pose information, which can be obtained from odometry. We do so by replacing correspondence losses with epipolar losses, which encourage putative matches to lie on the associated epipolar line. While weaker than correspondence supervision, we observe that this cue is sufficient for finetuning existing models on new data. We then further relax the assumption of known camera poses by using pose estimates in a novel bootstrapping approach. We evaluate on highly challenging datasets, including an indoor drone dataset and an outdoor smartphone camera dataset, and obtain state-of-the-art results without strong supervision.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司