亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

New upper bounds are developed for the $L_2$ distance between $\xi/\text{Var}[\xi]^{1/2}$ and linear and quadratic functions of $z\sim N(0,I_n)$ for random variables of the form $\xi=bz^\top f(z) - \text{div} f(z)$. The linear approximation yields a central limit theorem when the squared norm of $f(z)$ dominates the squared Frobenius norm of $\nabla f(z)$ in expectation. Applications of this normal approximation are given for the asymptotic normality of de-biased estimators in linear regression with correlated design and convex penalty in the regime $p/n \le \gamma$ for constant $\gamma\in(0,{\infty})$. For the estimation of linear functions $\langle a_0,\beta\rangle$ of the unknown coefficient vector $\beta$, this analysis leads to asymptotic normality of the de-biased estimate for most normalized directions $a_0$, where ``most'' is quantified in a precise sense. This asymptotic normality holds for any convex penalty if $\gamma<1$ and for any strongly convex penalty if $\gamma\ge 1$. In particular the penalty needs not be separable or permutation invariant. By allowing arbitrary regularizers, the results vastly broaden the scope of applicability of de-biasing methodologies to obtain confidence intervals in high-dimensions. In the absence of strong convexity for $p>n$, asymptotic normality of the de-biased estimate is obtained for the Lasso and the group Lasso under additional conditions. For general convex penalties, our analysis also provides prediction and estimation error bounds of independent interest.

相關內容

The asymptotic behaviour of Linear Spectral Statistics (LSS) of the smoothed periodogram estimator of the spectral coherency matrix of a complex Gaussian high-dimensional time series $(\y_n)_{n \in \mathbb{Z}}$ with independent components is studied under the asymptotic regime where the sample size $N$ converges towards $+\infty$ while the dimension $M$ of $\y$ and the smoothing span of the estimator grow to infinity at the same rate in such a way that $\frac{M}{N} \rightarrow 0$. It is established that, at each frequency, the estimated spectral coherency matrix is close from the sample covariance matrix of an independent identically $\mathcal{N}_{\mathbb{C}}(0,\I_M)$ distributed sequence, and that its empirical eigenvalue distribution converges towards the Marcenko-Pastur distribution. This allows to conclude that each LSS has a deterministic behaviour that can be evaluated explicitly. Using concentration inequalities, it is shown that the order of magnitude of the supremum over the frequencies of the deviation of each LSS from its deterministic approximation is of the order of $\frac{1}{M} + \frac{\sqrt{M}}{N}+ (\frac{M}{N})^{3}$ where $N$ is the sample size. Numerical simulations supports our results.

We present a new data structure to approximate accurately and efficiently a polynomial $f$ of degree $d$ given as a list of coefficients. Its properties allow us to improve the state-of-the-art bounds on the bit complexity for the problems of root isolation and approximate multipoint evaluation. This data structure also leads to a new geometric criterion to detect ill-conditioned polynomials, implying notably that the standard condition number of the zeros of a polynomial is at least exponential in the number of roots of modulus less than $1/2$ or greater than $2$.Given a polynomial $f$ of degree $d$ with $\|f\|_1 \leq 2^\tau$ for $\tau \geq 1$, isolating all its complex roots or evaluating it at $d$ points can be done with a quasi-linear number of arithmetic operations. However, considering the bit complexity, the state-of-the-art algorithms require at least $d^{3/2}$ bit operations even for well-conditioned polynomials and when the accuracy required is low. Given a positive integer $m$, we can compute our new data structure and evaluate $f$ at $d$ points in the unit disk with an absolute error less than $2^{-m}$ in $\widetilde O(d(\tau+m))$ bit operations, where $\widetilde O(\cdot)$ means that we omit logarithmic factors. We also show that if $\kappa$ is the absolute condition number of the zeros of $f$, then we can isolate all the roots of $f$ in $\widetilde O(d(\tau + \log \kappa))$ bit operations. Moreover, our algorithms are simple to implement. For approximating the complex roots of a polynomial, we implemented a small prototype in Python/NumPy that is an order of magnitude faster than the state-of-the-art solver MPSolve for high degree polynomials with random coefficients.

We consider the problem of scheduling to minimize mean response time in M/G/1 queues where only estimated job sizes (processing times) are known to the scheduler, where a job of true size $s$ has estimated size in the interval $[\beta s, \alpha s]$ for some $\alpha \geq \beta > 0$. We evaluate each scheduling policy by its approximation ratio, which we define to be the ratio between its mean response time and that of Shortest Remaining Processing Time (SRPT), the optimal policy when true sizes are known. Our question: is there a scheduling policy that (a) has approximation ratio near 1 when $\alpha$ and $\beta$ are near 1, (b) has approximation ratio bounded by some function of $\alpha$ and $\beta$ even when they are far from 1, and (c) can be implemented without knowledge of $\alpha$ and $\beta$? We first show that naively running SRPT using estimated sizes in place of true sizes is not such a policy: its approximation ratio can be arbitrarily large for any fixed $\beta < 1$. We then provide a simple variant of SRPT for estimated sizes that satisfies criteria (a), (b), and (c). In particular, we prove its approximation ratio approaches 1 uniformly as $\alpha$ and $\beta$ approach 1. This is the first result showing this type of convergence for M/G/1 scheduling. We also study the Preemptive Shortest Job First (PSJF) policy, a cousin of SRPT. We show that, unlike SRPT, naively running PSJF using estimated sizes in place of true sizes satisfies criteria (b) and (c), as well as a weaker version of (a).

Inverse optimization is the problem of determining the values of missing input parameters for an associated forward problem that are closest to given estimates and that will make a given target vector optimal. This study is concerned with the relationship of a particular inverse mixed integer linear optimization problem (MILP) to both the forward problem and the separation problem associated with its feasible region. We show that a decision version of the inverse MILP in which a primal bound is verified is coNP-complete, whereas primal bound verification for the associated forward problem is NP-complete, and that the optimal value verification problems for both the inverse problem and the associated forward problem are complete for the complexity class D^P. We also describe a cutting-plane algorithm for solving inverse MILPs that illustrates the close relationship between the separation problem for the convex hull of solutions to a given MILP and the associated inverse problem. The inverse problem is shown to be equivalent to the separation problem for the radial cone defined by all inequalities that are both valid for the convex hull of solutions to the forward problem and binding at the target vector. Thus, the inverse, forward, and separation problems can be said to be equivalent.

We propose the first near-optimal quantum algorithm for estimating in Euclidean norm the mean of a vector-valued random variable with finite mean and covariance. Our result aims at extending the theory of multivariate sub-Gaussian estimators to the quantum setting. Unlike classically, where any univariate estimator can be turned into a multivariate estimator with at most a logarithmic overhead in the dimension, no similar result can be proved in the quantum setting. Indeed, Heinrich ruled out the existence of a quantum advantage for the mean estimation problem when the sample complexity is smaller than the dimension. Our main result is to show that, outside this low-precision regime, there is a quantum estimator that outperforms any classical estimator. Our approach is substantially more involved than in the univariate setting, where most quantum estimators rely only on phase estimation. We exploit a variety of additional algorithmic techniques such as amplitude amplification, the Bernstein-Vazirani algorithm, and quantum singular value transformation. Our analysis also uses concentration inequalities for multivariate truncated statistics. We develop our quantum estimators in two different input models that showed up in the literature before. The first one provides coherent access to the binary representation of the random variable and it encompasses the classical setting. In the second model, the random variable is directly encoded into the phases of quantum registers. This model arises naturally in many quantum algorithms but it is often incomparable to having classical samples. We adapt our techniques to these two settings and we show that the second model is strictly weaker for solving the mean estimation problem. Finally, we describe several applications of our algorithms, notably in measuring the expectation values of commuting observables and in the field of machine learning.

The goal of this paper is to construct ergodic estimators for the parameters in the double exponential Ornstein-Uhlenbeck process, observed at discrete time instants with time step size h. The existence and uniqueness, the strong consistency, and the asymptotic normality of the estimators are obtained for arbitrarily fixed time step size h. A simulation method of the double exponential Ornstein-Uhlenbeck process is proposed and some numerical simulations are performed to demonstrate the effectiveness of the proposed estimators.

Particle filtering methods are widely applied in sequential state estimation within nonlinear non-Gaussian state space model. However, the traditional particle filtering methods suffer the weight degeneracy in the high-dimensional state space model. Currently, there are many methods to improve the performance of particle filtering in high-dimensional state space model. Among these, the more advanced method is to construct the Sequential Makov chian Monte Carlo (SMCMC) framework by implementing the Composite Metropolis-Hasting (MH) Kernel. In this paper, we proposed to discrete the Zig-Zag Sampler and apply the Zig-Zag Sampler in the refinement stage of the Composite MH Kernel within the SMCMC framework which is implemented the invertible particle flow in the joint draw stage. We evaluate the performance of proposed method through numerical experiments of the challenging complex high-dimensional filtering examples. Nemurical experiments show that in high-dimensional state estimation examples, the proposed method improves estimation accuracy and increases the acceptance ratio compared with state-of-the-art filtering methods.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司