Data analytics using GUI-based workflows is an iterative process in which an analyst makes many iterations of changes to refine the workflow, generating a different version at each iteration. In many cases, the result of executing a workflow version is equivalent to a result of a prior executed version. Identifying such equivalence between the execution results of different workflow versions is important for optimizing the performance of a workflow by reusing results from a previous run. The size of the workflows and the complexity of their operators often make existing equivalence verifiers (EVs) not able to solve the problem. In this paper, we present "Veer," which leverages the fact that two workflow versions can be very similar except for a few changes. The solution divides the workflow version pair into small parts, called windows, and verifies the equivalence within each window by using an existing EV as a black box. We develop solutions to efficiently generate windows and verify the equivalence within each window. Our thorough experiments on real workflows show that Veer is able to not only verify the equivalence of workflows that cannot be supported by existing EVs but also do the verification efficiently.
In contrast to regular (simple) networks, hyper networks possess the ability to depict more complex relationships among nodes and store extensive information. Such networks are commonly found in real-world applications, such as in social interactions. Learning embedded representations for nodes involves a process that translates network structures into more simplified spaces, thereby enabling the application of machine learning approaches designed for vector data to be extended to network data. Nevertheless, there remains a need to delve into methods for learning embedded representations that prioritize structural aspects. This research introduces HyperS2V, a node embedding approach that centers on the structural similarity within hyper networks. Initially, we establish the concept of hyper-degrees to capture the structural properties of nodes within hyper networks. Subsequently, a novel function is formulated to measure the structural similarity between different hyper-degree values. Lastly, we generate structural embeddings utilizing a multi-scale random walk framework. Moreover, a series of experiments, both intrinsic and extrinsic, are performed on both toy and real networks. The results underscore the superior performance of HyperS2V in terms of both interpretability and applicability to downstream tasks.
Data analytics using GUI-based workflows is an iterative process in which an analyst makes many iterations of changes to refine the workflow, generating a different version at each iteration. In many cases, the result of executing a workflow version is equivalent to a result of a prior executed version. Identifying such equivalence between the execution results of different workflow versions is important for optimizing the performance of a workflow by reusing results from a previous run. The size of the workflows and the complexity of their operators often make existing equivalence verifiers (EVs) not able to solve the problem. In this paper, we present "Veer," which leverages the fact that two workflow versions can be very similar except for a few changes. The solution divides the workflow version pair into small parts, called windows, and verifies the equivalence within each window by using an existing EV as a black box. We develop solutions to efficiently generate windows and verify the equivalence within each window. Our thorough experiments on real workflows show that Veer is able to not only verify the equivalence of workflows that cannot be supported by existing EVs but also do the verification efficiently.
The pursuit of fairness in machine learning models has emerged as a critical research challenge in different applications ranging from bank loan approval to face detection. Despite the widespread adoption of artificial intelligence algorithms across various domains, concerns persist regarding the presence of biases and discrimination within these models. To address this pressing issue, this study introduces a novel method called "The Fairness Stitch (TFS)" to enhance fairness in deep learning models. This method combines model stitching and training jointly, while incorporating fairness constraints. In this research, we assess the effectiveness of our proposed method by conducting a comprehensive evaluation of two well-known datasets, CelebA and UTKFace. We systematically compare the performance of our approach with the existing baseline method. Our findings reveal a notable improvement in achieving a balanced trade-off between fairness and performance, highlighting the promising potential of our method to address bias-related challenges and foster equitable outcomes in machine learning models. This paper poses a challenge to the conventional wisdom of the effectiveness of the last layer in deep learning models for de-biasing.
Using model weights pretrained on a high-resource language as a warm start can reduce the need for data and compute to obtain high-quality language models for other, especially low-resource, languages. However, if we want to use a new tokenizer specialized for the target language, we cannot transfer the source model's embedding matrix. In this paper, we propose FOCUS - Fast Overlapping Token Combinations Using Sparsemax, a novel embedding initialization method that initializes the embedding matrix effectively for a new tokenizer based on information in the source model's embedding matrix. FOCUS represents newly added tokens as combinations of tokens in the overlap of the source and target vocabularies. The overlapping tokens are selected based on semantic similarity in an auxiliary static token embedding space. We focus our study on using the multilingual XLM-R as a source model and empirically show that FOCUS outperforms random initialization and previous work in language modeling and on a range of downstream tasks (NLI, QA, and NER).
Object rearrangement is a fundamental problem in robotics with various practical applications ranging from managing warehouses to cleaning and organizing home kitchens. While existing research has primarily focused on single-agent solutions, real-world scenarios often require multiple robots to work together on rearrangement tasks. This paper proposes a comprehensive learning-based framework for multi-agent object rearrangement planning, addressing the challenges of task sequencing and path planning in complex environments. The proposed method iteratively selects objects, determines their relocation regions, and pairs them with available robots under kinematic feasibility and task reachability for execution to achieve the target arrangement. Our experiments on a diverse range of simulated and real-world environments demonstrate the effectiveness and robustness of the proposed framework. Furthermore, results indicate improved performance in terms of traversal time and success rate compared to baseline approaches.
Scientific workflow systems are increasingly popular for expressing and executing complex data analysis pipelines over large datasets, as they offer reproducibility, dependability, and scalability of analyses by automatic parallelization on large compute clusters. However, implementing workflows is difficult due to the involvement of many black-box tools and the deep infrastructure stack necessary for their execution. Simultaneously, user-supporting tools are rare, and the number of available examples is much lower than in classical programming languages. To address these challenges, we investigate the efficiency of Large Language Models (LLMs), specifically ChatGPT, to support users when dealing with scientific workflows. We performed three user studies in two scientific domains to evaluate ChatGPT for comprehending, adapting, and extending workflows. Our results indicate that LLMs efficiently interpret workflows but achieve lower performance for exchanging components or purposeful workflow extensions. We characterize their limitations in these challenging scenarios and suggest future research directions.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.