亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ubiquity of large-scale Pre-Trained Models (PTMs) is on the rise, sparking interest in model hubs, and dedicated platforms for hosting PTMs. Despite this trend, a comprehensive exploration of the challenges that users encounter and how the community leverages PTMs remains lacking. To address this gap, we conducted an extensive mixed-methods empirical study by focusing on discussion forums and the model hub of HuggingFace, the largest public model hub. Based on our qualitative analysis, we present a taxonomy of the challenges and benefits associated with PTM reuse within this community. We then conduct a quantitative study to track model-type trends and model documentation evolution over time. Our findings highlight prevalent challenges such as limited guidance for beginner users, struggles with model output comprehensibility in training or inference, and a lack of model understanding. We also identified interesting trends among models where some models maintain high upload rates despite a decline in topics related to them. Additionally, we found that despite the introduction of model documentation tools, its quantity has not increased over time, leading to difficulties in model comprehension and selection among users. Our study sheds light on new challenges in reusing PTMs that were not reported before and we provide recommendations for various stakeholders involved in PTM reuse.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 機器人 · Performer · EASE · HTTPS ·
2024 年 3 月 6 日

People with Visual Impairments (PVI) typically recognize objects through haptic perception. Knowing objects and materials before touching is desired by the target users but under-explored in the field of human-centered robotics. To fill this gap, in this work, a wearable vision-based robotic system, MateRobot, is established for PVI to recognize materials and object categories beforehand. To address the computational constraints of mobile platforms, we propose a lightweight yet accurate model MateViT to perform pixel-wise semantic segmentation, simultaneously recognizing both objects and materials. Our methods achieve respective 40.2% and 51.1% of mIoU on COCOStuff-10K and DMS datasets, surpassing the previous method with +5.7% and +7.0% gains. Moreover, on the field test with participants, our wearable system reaches a score of 28 in the NASA-Task Load Index, indicating low cognitive demands and ease of use. Our MateRobot demonstrates the feasibility of recognizing material property through visual cues and offers a promising step towards improving the functionality of wearable robots for PVI. The source code has been made publicly available at //junweizheng93.github.io/publications/MATERobot/MATERobot.html.

Constructing photo-realistic Free-Viewpoint Videos (FVVs) of dynamic scenes from multi-view videos remains a challenging endeavor. Despite the remarkable advancements achieved by current neural rendering techniques, these methods generally require complete video sequences for offline training and are not capable of real-time rendering. To address these constraints, we introduce 3DGStream, a method designed for efficient FVV streaming of real-world dynamic scenes. Our method achieves fast on-the-fly per-frame reconstruction within 12 seconds and real-time rendering at 200 FPS. Specifically, we utilize 3D Gaussians (3DGs) to represent the scene. Instead of the na\"ive approach of directly optimizing 3DGs per-frame, we employ a compact Neural Transformation Cache (NTC) to model the translations and rotations of 3DGs, markedly reducing the training time and storage required for each FVV frame. Furthermore, we propose an adaptive 3DG addition strategy to handle emerging objects in dynamic scenes. Experiments demonstrate that 3DGStream achieves competitive performance in terms of rendering speed, image quality, training time, and model storage when compared with state-of-the-art methods.

Large Language Models (LLMs) have emerged as a powerful tool in advancing the Text-to-SQL task, significantly outperforming traditional methods. Nevertheless, as a nascent research field, there is still no consensus on the optimal prompt templates and design frameworks. Additionally, existing benchmarks inadequately explore the performance of LLMs across the various sub-tasks of the Text-to-SQL process, which hinders the assessment of LLMs' cognitive capabilities and the optimization of LLM-based solutions.To address the aforementioned issues, we firstly construct a new dataset designed to mitigate the risk of overfitting in LLMs. Then we formulate five evaluation tasks to comprehensively assess the performance of diverse methods across various LLMs throughout the Text-to-SQL process.Our study highlights the performance disparities among LLMs and proposes optimal in-context learning solutions tailored to each task. These findings offer valuable insights for enhancing the development of LLM-based Text-to-SQL systems.

Despite the many advances of Large Language Models (LLMs) and their unprecedented rapid evolution, their impact and integration into every facet of our daily lives is limited due to various reasons. One critical factor hindering their widespread adoption is the occurrence of hallucinations, where LLMs invent answers that sound realistic, yet drift away from factual truth. In this paper, we present a novel method for detecting hallucinations in large language models, which tackles a critical issue in the adoption of these models in various real-world scenarios. Through extensive evaluations across multiple datasets and LLMs, including Llama-2, we study the hallucination levels of various recent LLMs and demonstrate the effectiveness of our method to automatically detect them. Notably, we observe up to 62% hallucinations for Llama-2 in a specific experiment, where our method achieves a Balanced Accuracy (B-ACC) of 87%, all without relying on external knowledge.

Distributed Stream Processing (DSP) systems are capable of processing large streams of unbounded data, offering high throughput and low latencies. To maintain a stable Quality of Service (QoS), these systems require a sufficient allocation of resources. At the same time, over-provisioning can result in wasted energy and high operating costs. Therefore, to maximize resource utilization, autoscaling methods have been proposed that aim to efficiently match the resource allocation with the incoming workload. However, determining when and by how much to scale remains a significant challenge. Given the long-running nature of DSP jobs, scaling actions need to be executed at runtime, and to maintain a good QoS, they should be both accurate and infrequent. To address the challenges of autoscaling, the concept of self-adaptive systems is particularly fitting. These systems monitor themselves and their environment, adapting to changes with minimal need for expert involvement. This paper introduces Daedalus, a self-adaptive manager for autoscaling in DSP systems, which draws on the principles of self-adaption to address the challenge of efficient autoscaling. Daedalus monitors a running DSP job and builds performance models, aiming to predict the maximum processing capacity at different scale-outs. When combined with time series forecasting to predict future workloads, Daedalus proactively scales DSP jobs, optimizing for maximum throughput and minimizing both latencies and resource usage. We conducted experiments using Apache Flink and Kafka Streams to evaluate the performance of Daedalus against two state-of-the-art approaches. Daedalus was able to achieve comparable latencies while reducing resource usage by up to 71%.

Artificial Intelligence (AI) is increasingly employed in various decision-making tasks, typically as a Recommender, providing recommendations that the AI deems correct. However, recent studies suggest this may diminish human analytical thinking and lead to humans' inappropriate reliance on AI, impairing the synergy in human-AI teams. In contrast, human advisors in group decision-making perform various roles, such as analyzing alternative options or criticizing decision-makers to encourage their critical thinking. This diversity of roles has not yet been empirically explored in AI assistance. In this paper, we examine three AI roles: Recommender, Analyzer, and Devil's Advocate, and evaluate their effects across two AI performance levels. Our results show each role's distinct strengths and limitations in task performance, reliance appropriateness, and user experience. Notably, the Recommender role is not always the most effective, especially if the AI performance level is low, the Analyzer role may be preferable. These insights offer valuable implications for designing AI assistants with adaptive functional roles according to different situations.

Large Language Models (LLMs) are deployed in interactive contexts with direct user engagement, such as chatbots and writing assistants. These deployments are vulnerable to prompt injection and jailbreaking (collectively, prompt hacking), in which models are manipulated to ignore their original instructions and follow potentially malicious ones. Although widely acknowledged as a significant security threat, there is a dearth of large-scale resources and quantitative studies on prompt hacking. To address this lacuna, we launch a global prompt hacking competition, which allows for free-form human input attacks. We elicit 600K+ adversarial prompts against three state-of-the-art LLMs. We describe the dataset, which empirically verifies that current LLMs can indeed be manipulated via prompt hacking. We also present a comprehensive taxonomical ontology of the types of adversarial prompts.

Large Language Models (LLMs) are a class of generative AI models built using the Transformer network, capable of leveraging vast datasets to identify, summarize, translate, predict, and generate language. LLMs promise to revolutionize society, yet training these foundational models poses immense challenges. Semantic vector search within large language models is a potent technique that can significantly enhance search result accuracy and relevance. Unlike traditional keyword-based search methods, semantic search utilizes the meaning and context of words to grasp the intent behind queries and deliver more precise outcomes. Elasticsearch emerges as one of the most popular tools for implementing semantic search an exceptionally scalable and robust search engine designed for indexing and searching extensive datasets. In this article, we delve into the fundamentals of semantic search and explore how to harness Elasticsearch and Transformer models to bolster large language model processing paradigms. We gain a comprehensive understanding of semantic search principles and acquire practical skills for implementing semantic search in real-world model application scenarios.

While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

北京阿比特科技有限公司