亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distributed Stream Processing (DSP) systems are capable of processing large streams of unbounded data, offering high throughput and low latencies. To maintain a stable Quality of Service (QoS), these systems require a sufficient allocation of resources. At the same time, over-provisioning can result in wasted energy and high operating costs. Therefore, to maximize resource utilization, autoscaling methods have been proposed that aim to efficiently match the resource allocation with the incoming workload. However, determining when and by how much to scale remains a significant challenge. Given the long-running nature of DSP jobs, scaling actions need to be executed at runtime, and to maintain a good QoS, they should be both accurate and infrequent. To address the challenges of autoscaling, the concept of self-adaptive systems is particularly fitting. These systems monitor themselves and their environment, adapting to changes with minimal need for expert involvement. This paper introduces Daedalus, a self-adaptive manager for autoscaling in DSP systems, which draws on the principles of self-adaption to address the challenge of efficient autoscaling. Daedalus monitors a running DSP job and builds performance models, aiming to predict the maximum processing capacity at different scale-outs. When combined with time series forecasting to predict future workloads, Daedalus proactively scales DSP jobs, optimizing for maximum throughput and minimizing both latencies and resource usage. We conducted experiments using Apache Flink and Kafka Streams to evaluate the performance of Daedalus against two state-of-the-art approaches. Daedalus was able to achieve comparable latencies while reducing resource usage by up to 71%.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Improper parsing of attacker-controlled input is a leading source of software security vulnerabilities, especially when programmers transcribe informal format descriptions in RFCs into efficient parsing logic in low-level, memory unsafe languages. Several researchers have proposed formal specification languages for data formats from which efficient code can be extracted. However, distilling informal requirements into formal specifications is challenging and, despite their benefits, new, formal languages are hard for people to learn and use. In this work, we present 3DGen, a framework that makes use of AI agents to transform mixed informal input, including natural language documents (i.e., RFCs) and example inputs into format specifications in a language called 3D. To support humans in understanding and trusting the generated specifications, 3DGen uses symbolic methods to also synthesize test inputs that can be validated against an external oracle. Symbolic test generation also helps in distinguishing multiple plausible solutions. Through a process of repeated refinement, 3DGen produces a 3D specification that conforms to a test suite, and which yields safe, efficient, provably correct, parsing code in C. We have evaluated 3DGen on 20 Internet standard formats, demonstrating the potential for AI-agents to produce formally verified C code at a non-trivial scale. A key enabler is the use of a domain-specific language to limit AI outputs to a class for which automated, symbolic analysis is tractable.

This work investigates a new erase scheme in NAND flash memory to improve the lifetime and performance of modern solid-state drives (SSDs). In NAND flash memory, an erase operation applies a high voltage (e.g., > 20 V) to flash cells for a long time (e.g., > 3.5 ms), which degrades cell endurance and potentially delays user I/O requests. While a large body of prior work has proposed various techniques to mitigate the negative impact of erase operations, no work has yet investigated how erase latency should be set to fully exploit the potential of NAND flash memory; most existing techniques use a fixed latency for every erase operation which is set to cover the worst-case operating conditions. To address this, we propose AERO (Adaptive ERase Operation), a new erase scheme that dynamically adjusts erase latency to be just long enough for reliably erasing target cells, depending on the cells' current erase characteristics. AERO accurately predicts such near-optimal erase latency based on the number of fail bits during an erase operation. To maximize its benefits, we further optimize AERO in two aspects. First, at the beginning of an erase operation, AERO attempts to erase the cells for a short time (e.g., 1 ms), which enables AERO to always obtain the number of fail bits necessary to accurately predict the near-optimal erase latency. Second, AERO aggressively yet safely reduces erase latency by leveraging a large reliability margin present in modern SSDs. We demonstrate the feasibility and reliability of AERO using 160 real 3D NAND flash chips, showing that it enhances SSD lifetime over the conventional erase scheme by 43% without change to existing NAND flash chips. Our system-level evaluation using eleven real-world workloads shows that an AERO-enabled SSD reduces read tail latency by 34% on average over a state-of-the-art technique.

Entity alignment (EA), a pivotal process in integrating multi-source Knowledge Graphs (KGs), seeks to identify equivalent entity pairs across these graphs. Most existing approaches regard EA as a graph representation learning task, concentrating on enhancing graph encoders. However, the decoding process in EA - essential for effective operation and alignment accuracy - has received limited attention and remains tailored to specific datasets and model architectures, necessitating both entity and additional explicit relation embeddings. This specificity limits its applicability, particularly in GNN-based models. To address this gap, we introduce a novel, generalized, and efficient decoding approach for EA, relying solely on entity embeddings. Our method optimizes the decoding process by minimizing Dirichlet energy, leading to the gradient flow within the graph, to maximize graph homophily. The discretization of the gradient flow produces a fast and scalable approach, termed Triple Feature Propagation (TFP). TFP innovatively generalizes adjacency matrices to multi-views matrices:entity-to-entity, entity-to-relation, relation-to-entity, and relation-to-triple. The gradient flow through generalized matrices enables TFP to harness the multi-view structural information of KGs. Rigorous experimentation on diverse public datasets demonstrates that our approach significantly enhances various EA methods. Notably, the approach achieves these advancements with less than 6 seconds of additional computational time, establishing a new benchmark in efficiency and adaptability for future EA methods.

Programming often involves converting detailed and complex specifications into code, a process during which developers typically utilize visual aids to more effectively convey concepts. While recent developments in Large Multimodal Models have demonstrated remarkable abilities in visual reasoning and mathematical tasks, there is little work on investigating whether these models can effectively interpret visual elements for code generation. To this end, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic problem-solving skills in visually rich contexts. MMCode contains 3,548 questions and 6,620 images collected from real-world programming challenges harvested from 10 code competition websites, presenting significant challenges due to the extreme demand for reasoning abilities. Our experiment results show that current state-of-the-art models struggle to solve these problems. The results highlight the lack of powerful vision-code models, and we hope MMCode can serve as an inspiration for future works in this domain. The data and code are publicly available at //github.com/happylkx/MMCode.

Simultaneous Localization and Mapping (SLAM) technology has been widely applied in various robotic scenarios, from rescue operations to autonomous driving. However, the generalization of SLAM algorithms remains a significant challenge, as current datasets often lack scalability in terms of platforms and environments. To address this limitation, we present FusionPortableV2, a multi-sensor SLAM dataset featuring notable sensor diversity, varied motion patterns, and a wide range of environmental scenarios. Our dataset comprises $27$ sequences, spanning over $2.5$ hours and collected from four distinct platforms: a handheld suite, wheeled and legged robots, and vehicles. These sequences cover diverse settings, including buildings, campuses, and urban areas, with a total length of $38.7km$. Additionally, the dataset includes ground-truth (GT) trajectories and RGB point cloud maps covering approximately $0.3km^2$. To validate the utility of our dataset in advancing SLAM research, we assess several state-of-the-art (SOTA) SLAM algorithms. Furthermore, we demonstrate the dataset's broad applicability beyond traditional SLAM tasks by investigating its potential for monocular depth estimation. The complete dataset, including sensor data, GT, and calibration details, is accessible at //fusionportable.github.io/dataset/fusionportable_v2.

Multivariate Time Series (MTS) anomaly detection focuses on pinpointing samples that diverge from standard operational patterns, which is crucial for ensuring the safety and security of industrial applications. The primary challenge in this domain is to develop representations capable of discerning anomalies effectively. The prevalent methods for anomaly detection in the literature are predominantly reconstruction-based and predictive in nature. However, they typically concentrate on a single-dimensional instance level, thereby not fully harnessing the complex associations inherent in industrial MTS. To address this issue, we propose a novel self-supervised hierarchical contrastive consistency learning method for detecting anomalies in MTS, named HCL-MTSAD. It innovatively leverages data consistency at multiple levels inherent in industrial MTS, systematically capturing consistent associations across four latent levels-measurement, sample, channel, and process. By developing a multi-layer contrastive loss, HCL-MTSAD can extensively mine data consistency and spatio-temporal association, resulting in more informative representations. Subsequently, an anomaly discrimination module, grounded in self-supervised hierarchical contrastive learning, is designed to detect timestamp-level anomalies by calculating multi-scale data consistency. Extensive experiments conducted on six diverse MTS datasets retrieved from real cyber-physical systems and server machines, in comparison with 20 baselines, indicate that HCL-MTSAD's anomaly detection capability outperforms the state-of-the-art benchmark models by an average of 1.8\% in terms of F1 score.

Unmanned Aerial Vehicles (UAVs) are integral in various sectors like agriculture, surveillance, and logistics, driven by advancements in 5G. However, existing research lacks a comprehensive approach addressing both data freshness and security concerns. In this paper, we address the intricate challenges of data freshness, and security, especially in the context of eavesdropping and jamming in modern UAV networks. Our framework incorporates exponential AoI metrics and emphasizes secrecy rate to tackle eavesdropping and jamming threats. We introduce a transformer-enhanced Deep Reinforcement Learning (DRL) approach to optimize task offloading processes. Comparative analysis with existing algorithms showcases the superiority of our scheme, indicating its promising advancements in UAV network management.

This study aims to address the pervasive challenge of quantifying uncertainty in large language models (LLMs) without logit-access. Conformal Prediction (CP), known for its model-agnostic and distribution-free features, is a desired approach for various LLMs and data distributions. However, existing CP methods for LLMs typically assume access to the logits, which are unavailable for some API-only LLMs. In addition, logits are known to be miscalibrated, potentially leading to degraded CP performance. To tackle these challenges, we introduce a novel CP method that (1) is tailored for API-only LLMs without logit-access; (2) minimizes the size of prediction sets; and (3) ensures a statistical guarantee of the user-defined coverage. The core idea of this approach is to formulate nonconformity measures using both coarse-grained (i.e., sample frequency) and fine-grained uncertainty notions (e.g., semantic similarity). Experimental results on both close-ended and open-ended Question Answering tasks show our approach can mostly outperform the logit-based CP baselines.

Recent advances in named entity recognition (NER) have pushed the boundary of the task to incorporate visual signals, leading to many variants, including multi-modal NER (MNER) or grounded MNER (GMNER). A key challenge to these tasks is that the model should be able to generalize to the entities unseen during the training, and should be able to handle the training samples with noisy annotations. To address this obstacle, we propose SCANNER (Span CANdidate detection and recognition for NER), a model capable of effectively handling all three NER variants. SCANNER is a two-stage structure; we extract entity candidates in the first stage and use it as a query to get knowledge, effectively pulling knowledge from various sources. We can boost our performance by utilizing this entity-centric extracted knowledge to address unseen entities. Furthermore, to tackle the challenges arising from noisy annotations in NER datasets, we introduce a novel self-distillation method, enhancing the robustness and accuracy of our model in processing training data with inherent uncertainties. Our approach demonstrates competitive performance on the NER benchmark and surpasses existing methods on both MNER and GMNER benchmarks. Further analysis shows that the proposed distillation and knowledge utilization methods improve the performance of our model on various benchmarks.

The rapid growth of 3D Gaussian Splatting (3DGS) has revolutionized neural rendering, enabling real-time production of high-quality renderings. However, the previous 3DGS-based methods have limitations in urban scenes due to reliance on initial Structure-from-Motion(SfM) points and difficulties in rendering distant, sky and low-texture areas. To overcome these challenges, we propose a hybrid optimization method named HO-Gaussian, which combines a grid-based volume with the 3DGS pipeline. HO-Gaussian eliminates the dependency on SfM point initialization, allowing for rendering of urban scenes, and incorporates the Point Densitification to enhance rendering quality in problematic regions during training. Furthermore, we introduce Gaussian Direction Encoding as an alternative for spherical harmonics in the rendering pipeline, which enables view-dependent color representation. To account for multi-camera systems, we introduce neural warping to enhance object consistency across different cameras. Experimental results on widely used autonomous driving datasets demonstrate that HO-Gaussian achieves photo-realistic rendering in real-time on multi-camera urban datasets.

北京阿比特科技有限公司