亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Developing the next generation of household robot helpers requires combining locomotion and interaction capabilities, which is generally referred to as mobile manipulation (MoMa). MoMa tasks are difficult due to the large action space of the robot and the common multi-objective nature of the task, e.g., efficiently reaching a goal while avoiding obstacles. Current approaches often segregate tasks into navigation without manipulation and stationary manipulation without locomotion by manually matching parts of the action space to MoMa sub-objectives (e.g. base actions for locomotion objectives and arm actions for manipulation). This solution prevents simultaneous combinations of locomotion and interaction degrees of freedom and requires human domain knowledge for both partitioning the action space and matching the action parts to the sub-objectives. In this paper, we introduce Causal MoMa, a new framework to train policies for typical MoMa tasks that makes use of the most favorable subspace of the robot's action space to address each sub-objective. Causal MoMa automatically discovers the causal dependencies between actions and terms of the reward function and exploits these dependencies in a causal policy learning procedure that reduces gradient variance compared to previous state-of-the-art policy gradient algorithms, improving convergence and results. We evaluate the performance of Causal MoMa on three types of simulated robots across different MoMa tasks and demonstrate success in transferring the policies trained in simulation directly to a real robot, where our agent is able to follow moving goals and react to dynamic obstacles while simultaneously and synergistically controlling the whole-body: base, arm, and head. More information at //sites.google.com/view/causal-moma.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 控制器 · Elevate · 容差 · MoDELS ·
2023 年 6 月 21 日

With the advent of Unmanned Aerial Vehicles (UAV) and Micro Aerial Vehicles (MAV) in commercial sectors, their application for transporting and manipulating payloads has attracted many research work. A swarm of agents, cooperatively working to transport and manipulate a payload can overcome the physical limitations of a single agent, adding redundancy and tolerance against failures. In this paper, the dynamics of a swarm connected to a payload via flexible cables are modeled, and a decentralized control is designed using Artificial Potential Field (APF). The swarm is able to transport the payload through an unknown environment to a goal position while avoiding obstacles from the local information received from the onboard sensors. The key contributions are (a) the cables are modelled more accurately using lumped mass model instead of geometric constraints, (b) a decentralized swarm control is designed using potential field approach to ensure hover stability of system without payload state information, (c) the manipulation of payload elevation and azimuth angles are controlled by APF, and (d) the trajectory of the payload for transportation is governed by potential fields generated by goal point and obstacles. The efficacy of the method proposed in this work are evaluated through numerical simulations under the influence of external disturbances and failure of agents.

This paper presents a static-equilibrium oriented interaction force modeling and control approach of aerial manipulation employing uni-directional thrust (UDT) multirotors interacting with variously defined environments. First, a simplified system model for a quadrotor-based aerial manipulator is introduced considering parameterized work surfaces under assumptions, and then a range of meaningful manipulation tasks are utilized to explore the system properties in a quasi-static equilibrium state. An explicit interaction force model in relation with the aerial manipulator pose configuration and the environment parameter is derived from the static equilibrium analysis, based on which singularity is pointed out. Then a hybrid attitude/force interaction control strategy is presented to verify the proposed interaction force model, which involves high gain attitude control and feedforward plus feedback force control. This paper represents preliminary results. We study the properties of UDT-based aerial manipulators via specific tasks, and propose a novel framework for interaction force modeling and control aiming at maximizing the commercial values of UDT platforms for aerial manipulation purpose.

The ability to leverage heterogeneous robotic experience from different robots and tasks to quickly master novel skills and embodiments has the potential to transform robot learning. Inspired by recent advances in foundation models for vision and language, we propose a foundation agent for robotic manipulation. This agent, named RoboCat, is a visual goal-conditioned decision transformer capable of consuming multi-embodiment action-labelled visual experience. This data spans a large repertoire of motor control skills from simulated and real robotic arms with varying sets of observations and actions. With RoboCat, we demonstrate the ability to generalise to new tasks and robots, both zero-shot as well as through adaptation using only 100--1000 examples for the target task. We also show how a trained model itself can be used to generate data for subsequent training iterations, thus providing a basic building block for an autonomous improvement loop. We investigate the agent's capabilities, with large-scale evaluations both in simulation and on three different real robot embodiments. We find that as we grow and diversify its training data, RoboCat not only shows signs of cross-task transfer, but also becomes more efficient at adapting to new tasks.

Integer linear programming (ILP) models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work proposes new characterizations of ILP with the concept of boundary solutions. Motivated by the new characterizations, we develop an efficient local search solver, which is the first local search solver for general ILP validated on a large heterogeneous problem dataset. We propose a new local search framework that switches between three modes, namely Search, Improve, and Restore modes. We design tailored operators adapted to different modes, thus improving the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values, trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances. The theoretical analysis of our algorithm is also presented, which shows our algorithm could avoid visiting unnecessary regions and also maintain good connectivity of targeted solutions.

Due to the inherent uncertainty in their deformability during motion, previous methods in rope manipulation often require hundreds of real-world demonstrations to train a manipulation policy for each rope, even for simple tasks such as rope goal reaching, which hinder their applications in our ever-changing world. To address this issue, we introduce GenORM, a framework that allows the manipulation policy to handle different deformable ropes with a single real-world demonstration. To achieve this, we augment the policy by conditioning it on deformable rope parameters and training it with a diverse range of simulated deformable ropes so that the policy can adjust actions based on different rope parameters. At the time of inference, given a new rope, GenORM estimates the deformable rope parameters by minimizing the disparity between the grid density of point clouds of real-world demonstrations and simulations. With the help of a differentiable physics simulator, we require only a single real-world demonstration. Empirical validations on both simulated and real-world rope manipulation setups clearly show that our method can manipulate different ropes with a single demonstration and significantly outperforms the baseline in both environments (62% improvement in in-domain ropes, and 15% improvement in out-of-distribution ropes in simulation, 26% improvement in real-world), demonstrating the effectiveness of our approach in one-shot rope manipulation.

Goal-conditioned and Multi-Task Reinforcement Learning (GCRL and MTRL) address numerous problems related to robot learning, including locomotion, navigation, and manipulation scenarios. Recent works focusing on language-defined robotic manipulation tasks have led to the tedious production of massive human annotations to create dataset of textual descriptions associated with trajectories. To leverage reinforcement learning with text-based task descriptions, we need to produce reward functions associated with individual tasks in a scalable manner. In this paper, we leverage recent capabilities of Large Language Models (LLMs) and introduce \larg, Language-based Automatic Reward and Goal Generation, an approach that converts a text-based task description into its corresponding reward and goal-generation functions We evaluate our approach for robotic manipulation and demonstrate its ability to train and execute policies in a scalable manner, without the need for handcrafted reward functions.

Inference and prediction of routes have become of interest over the past decade owing to a dramatic increase in package delivery and ride-sharing services. Given the underlying combinatorial structure and the incorporation of probabilities, route prediction involves techniques from both formal methods and machine learning. One promising approach for predicting routes uses decision diagrams that are augmented with probability values. However, the effectiveness of this approach depends on the size of the compiled decision diagrams. The scalability of the approach is limited owing to its empirical runtime and space complexity. In this work, our contributions are two-fold: first, we introduce a relaxed encoding that uses a linear number of variables with respect to the number of vertices in a road network graph to significantly reduce the size of resultant decision diagrams. Secondly, instead of a stepwise sampling procedure, we propose a single pass sampling-based route prediction. In our evaluations arising from a real-world road network, we demonstrate that the resulting system achieves around twice the quality of suggested routes while being an order of magnitude faster compared to state-of-the-art.

Humans perform everyday tasks using a combination of locomotion and manipulation skills. Building a system that can handle both skills is essential to creating virtual humans. We present a physically-simulated human capable of solving box rearrangement tasks, which requires a combination of both skills. We propose a hierarchical control architecture, where each level solves the task at a different level of abstraction, and the result is a physics-based simulated virtual human capable of rearranging boxes in a cluttered environment. The control architecture integrates a planner, diffusion models, and physics-based motion imitation of sparse motion clips using deep reinforcement learning. Boxes can vary in size, weight, shape, and placement height. Code and trained control policies are provided.

This paper presents a sampling-based motion planning framework that leverages the geometry of obstacles in a workspace as well as prior experiences from motion planning problems. Previous studies have demonstrated the benefits of utilizing prior solutions to motion planning problems for improving planning efficiency. However, particularly for high-dimensional systems, achieving high performance across randomized environments remains a technical challenge for experience-based approaches due to the substantial variance between each query. To address this challenge, we propose a novel approach that involves decoupling the problem into subproblems through algorithmic workspace decomposition and graph search. Additionally, we capitalize on prior experience within each subproblem. This approach effectively reduces the variance across different problems, leading to improved performance for experience-based planners. To validate the effectiveness of our framework, we conduct experiments using 2D and 6D robotic systems. The experimental results demonstrate that our framework outperforms existing algorithms in terms of planning time and cost.

Due to the inherent uncertainty in their deformability during motion, previous methods in rope manipulation often require hundreds of real-world demonstrations to train a manipulation policy for each rope, even for simple tasks such as rope goal reaching, which hinder their applications in our ever-changing world. To address this issue, we introduce GenORM, a framework that allows the manipulation policy to handle different deformable ropes with a single real-world demonstration. To achieve this, we augment the policy by conditioning it on deformable rope parameters and training it with a diverse range of simulated deformable ropes so that the policy can adjust actions based on different rope parameters. At the time of inference, given a new rope, GenORM estimates the deformable rope parameters by minimizing the disparity between the grid density of point clouds of real-world demonstrations and simulations. With the help of a differentiable physics simulator, we require only a single real-world demonstration. Empirical validations on both simulated and real-world rope manipulation setups clearly show that our method can manipulate different ropes with a single demonstration and significantly outperforms the baseline in both environments (62% improvement in in-domain ropes, and 15% improvement in out-of-distribution ropes in simulation, 26% improvement in real-world), demonstrating the effectiveness of our approach in one-shot rope manipulation.

北京阿比特科技有限公司