亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Temporal data are increasingly prevalent in modern data science. A fundamental question is whether two time-series are related or not. Existing approaches often have limitations, such as relying on parametric assumptions, detecting only linear associations, and requiring multiple tests and corrections. While many non-parametric and universally consistent dependence measures have recently been proposed, directly applying them to temporal data can inflate the p-value and result in invalid test. To address these challenges, this paper introduces the temporal dependence statistic with block permutation to test independence between temporal data. Under proper assumptions, the proposed procedure is asymptotically valid and universally consistent for testing independence between stationary time-series, and capable of estimating the optimal dependence lag that maximizes the dependence. Notably, it is compatible with a rich family of distance and kernel based dependence measures, eliminates the need for multiple testing, and demonstrates superior power in multivariate, low sample size, and nonlinear settings. An analysis of neural connectivity with fMRI data reveals various temporal dependence among signals within the visual network and default mode network.

相關內容

With the increasing amount of data available to scientists in disciplines as diverse as bioinformatics, physics, and remote sensing, scientific workflow systems are becoming increasingly important for composing and executing scalable data analysis pipelines. When writing such workflows, users need to specify the resources to be reserved for tasks so that sufficient resources are allocated on the target cluster infrastructure. Crucially, underestimating a task's memory requirements can result in task failures. Therefore, users often resort to overprovisioning, resulting in significant resource wastage and decreased throughput. In this paper, we propose a novel online method that uses monitoring time series data to predict task memory usage in order to reduce the memory wastage of scientific workflow tasks. Our method predicts a task's runtime, divides it into k equally-sized segments, and learns the peak memory value for each segment depending on the total file input size. We evaluate the prototype implementation of our method using workflows from the publicly available nf-core repository, showing an average memory wastage reduction of 29.48% compared to the best state-of-the-art approach.

Many scientific and engineering applications require fitting regression models that are nonlinear in the parameters. Advances in computer hardware and software in recent decades have made it easier to fit such models. Relative to fitting regression models that are linear in the parameters, however, fitting nonlinear regression models is more complicated. In particular, software like the $\texttt{nls}$ R function requires care in how the model is parameterized and how initial values are chosen for the maximum likelihood iterations. Often special diagnostics are needed to detect and suggest approaches for dealing with identifiability problems that can arise with such model fitting. When using Bayesian inference, there is the added complication of having to specify (often noninformative or weakly informative) prior distributions. Generally, the details for these tasks must be determined for each new nonlinear regression model. This paper provides a step-by-step procedure for specifying these details for any appropriate nonlinear regression model. Following the procedure will result in a numerically robust algorithm for fitting the nonlinear regression model. We illustrate the methods with three different nonlinear models that are used in the analysis of experimental fatigue data and we include two detailed numerical examples.

Point processes are finding growing applications in numerous fields, such as neuroscience, high frequency finance and social media. So classic problems of classification and clustering are of increasing interest. However, analytic study of misclassification error probability in multi-class classification has barely begun. In this paper, we tackle the multi-class likelihood classification problem for point processes and develop, for the first time, both asymptotic upper and lower bounds on the error rate in terms of computable pair-wise affinities. We apply these general results to classifying renewal processes. Under some technical conditions, we show that the bounds have exponential decay and give explicit associated constants. The results are illustrated with a non-trivial simulation.

This note generalizes factorization for formulas with multiplicities and conjectures that the connection method along with this feature is computationally as powerful as resolution, also seen from a complexity point of view.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Mining graph data has become a popular research topic in computer science and has been widely studied in both academia and industry given the increasing amount of network data in the recent years. However, the huge amount of network data has posed great challenges for efficient analysis. This motivates the advent of graph representation which maps the graph into a low-dimension vector space, keeping original graph structure and supporting graph inference. The investigation on efficient representation of a graph has profound theoretical significance and important realistic meaning, we therefore introduce some basic ideas in graph representation/network embedding as well as some representative models in this chapter.

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司