Semantic communications are expected to become the core new paradigms of the sixth generation (6G) wireless networks. Most existing works implicitly utilize channel information for codecs training, which leads to poor communications when channel type or statistical characteristics change. To tackle this issue posed by various channels, a novel channel-transferable semantic communications (CT-SemCom) framework is proposed, which adapts the codecs learned on one type of channel to other types of channels. Furthermore, integrating the proposed framework and the orthogonal frequency division multiplexing systems integrating non-orthogonal multiple access technologies, i.e., OFDM-NOMA systems, a power allocation problem to realize the transfer from additive white Gaussian noise (AWGN) channels to multi-subcarrier Rayleigh fading channels is formulated. We then design a semantics-similar dual transformation (SSDT) algorithm to derive analytical solutions with low complexity. Simulation results show that the proposed CT-SemCom framework with SSDT algorithm significantly outperforms the existing work w.r.t. channel transferability, e.g., the peak signal-to-noise ratio (PSNR) of image transmission improves by 4.2-7.3 dB under different variances of Rayleigh fading channels.
Preventing the spread of misinformation is challenging. The detection of misleading content presents a significant hurdle due to its extreme linguistic and domain variability. Content-based models have managed to identify deceptive language by learning representations from textual data such as social media posts and web articles. However, aggregating representative samples of this heterogeneous phenomenon and implementing effective real-world applications is still elusive. Based on analytical work on the language of misinformation, this paper analyzes the linguistic attributes that characterize this phenomenon and how representative of such features some of the most popular misinformation datasets are. We demonstrate that the appropriate use of pertinent symbolic knowledge in combination with neural language models is helpful in detecting misleading content. Our results achieve state-of-the-art performance in misinformation datasets across the board, showing that our approach offers a valid and robust alternative to multi-task transfer learning without requiring any additional training data. Furthermore, our results show evidence that structured knowledge can provide the extra boost required to address a complex and unpredictable real-world problem like misinformation detection, not only in terms of accuracy but also time efficiency and resource utilization.
In recent years, large-scale pre-trained multimodal models (LMM) generally emerge to integrate the vision and language modalities, achieving considerable success in various natural language processing and computer vision tasks. The growing size of LMMs, however, results in a significant computational cost for fine-tuning these models for downstream tasks. Hence, prompt-based interaction strategy is studied to align modalities more efficiently. In this contex, we propose a novel prompt-based multimodal interaction strategy inspired by human memory strategy, namely Memory-Inspired Temporal Prompt Interaction (MITP). Our proposed method involves in two stages as in human memory strategy: the acquiring stage, and the consolidation and activation stage. We utilize temporal prompts on intermediate layers to imitate the acquiring stage, leverage similarity-based prompt interaction to imitate memory consolidation, and employ prompt generation strategy to imitate memory activation. The main strength of our paper is that we interact the prompt vectors on intermediate layers to leverage sufficient information exchange between modalities, with compressed trainable parameters and memory usage. We achieve competitive results on several datasets with relatively small memory usage and 2.0M of trainable parameters (about 1% of the pre-trained foundation model).
The Internet of Things (IoT) and massive IoT systems are key to sixth-generation (6G) networks due to dense connectivity, ultra-reliability, low latency, and high throughput. Artificial intelligence, including deep learning and machine learning, offers solutions for optimizing and deploying cutting-edge technologies for future radio communications. However, these techniques are vulnerable to adversarial attacks, leading to degraded performance and erroneous predictions, outcomes unacceptable for ubiquitous networks. This survey extensively addresses adversarial attacks and defense methods in 6G network-assisted IoT systems. The theoretical background and up-to-date research on adversarial attacks and defenses are discussed. Furthermore, we provide Monte Carlo simulations to validate the effectiveness of adversarial attacks compared to jamming attacks. Additionally, we examine the vulnerability of 6G IoT systems by demonstrating attack strategies applicable to key technologies, including reconfigurable intelligent surfaces, massive multiple-input multiple-output (MIMO)/cell-free massive MIMO, satellites, the metaverse, and semantic communications. Finally, we outline the challenges and future developments associated with adversarial attacks and defenses in 6G IoT systems.
IPv6 is a fundamentally different Internet Protocol than IPv4, and IPv6-only networks cannot, by default, communicate with the IPv4 Internet. This lack of interoperability necessitates complex mechanisms for incremental deployment and bridging networks so that non-dual-stack systems can interact with the whole Internet. NAT64 is one such bridging mechanism by which a network allows IPv6-only clients to connect to the entire Internet, leveraging DNS to identify IPv4-only networks, inject IPv6 response addresses pointing to an internal gateway, and seamlessly translate connections. To date, our understanding of NAT64 deployments is limited; what little information exists is largely qualitative, taken from mailing lists and informal discussions. In this work, we present a first look at the active measurement of NAT64 deployment on the Internet focused on deployment prevalence, configuration, and security. We seek to measure NAT64 via two distinct large-scale measurements: 1) open resolvers on the Internet, and 2) client measurements from RIPE Atlas. For both datasets, we broadly find that despite substantial anecdotal reports of NAT64 deployment, measurable deployments are exceedingly sparse. While our measurements do not preclude the large-scale deployment of NAT64, they do point to substantial challenges in measuring deployments with our existing best-known methods. Finally, we also identify problems in NAT64 deployments, with gateways not following the RFC specification and also posing potential security risks.
This paper investigates the spectrum sharing between a multiple-input single-output (MISO) secure communication system and a multiple-input multiple-output (MIMO) radar system in the presence of one suspicious eavesdropper. We jointly design the radar waveform and communication beamforming vector at the two systems, such that the interference between the base station (BS) and radar is reduced, and the detrimental radar interference to the communication system is enhanced to jam the eavesdropper, thereby increasing secure information transmission performance. In particular, by considering the imperfect channel state information (CSI) for the user and eavesdropper, we maximize the worst-case secrecy rate at the user, while ensuring the detection performance of radar system. To tackle this challenging problem, we propose a two-layer robust cooperative algorithm based on the S-lemma and semidefinite relaxation techniques. Simulation results demonstrate that the proposed algorithm achieves significant secrecy rate gains over the non-robust scheme. Furthermore, we illustrate the trade-off between secrecy rate and detection probability.
Despite the basic premise that next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native, to date, most existing efforts remain either qualitative or incremental extensions to existing "AI for wireless" paradigms. Indeed, creating AI-native wireless networks faces significant technical challenges due to the limitations of data-driven, training-intensive AI. These limitations include the black-box nature of the AI models, their curve-fitting nature, which can limit their ability to reason and adapt, their reliance on large amounts of training data, and the energy inefficiency of large neural networks. In response to these limitations, this article presents a comprehensive, forward-looking vision that addresses these shortcomings by introducing a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning. Causal reasoning, founded on causal discovery, causal representation learning, and causal inference, can help build explainable, reasoning-aware, and sustainable wireless networks. Towards fulfilling this vision, we first highlight several wireless networking challenges that can be addressed by causal discovery and representation, including ultra-reliable beamforming for terahertz (THz) systems, near-accurate physical twin modeling for digital twins, training data augmentation, and semantic communication. We showcase how incorporating causal discovery can assist in achieving dynamic adaptability, resilience, and cognition in addressing these challenges. Furthermore, we outline potential frameworks that leverage causal inference to achieve the overarching objectives of future-generation networks, including intent management, dynamic adaptability, human-level cognition, reasoning, and the critical element of time sensitivity.
Numerical computation is essential to many areas of artificial intelligence (AI), whose computing demands continue to grow dramatically, yet their continued scaling is jeopardized by the slowdown in Moore's law. Multi-function multi-way analog (MFMWA) technology, a computing architecture comprising arrays of memristors supporting in-memory computation of matrix operations, can offer tremendous improvements in computation and energy, but at the expense of inherent unpredictability and noise. We devise novel randomized algorithms tailored to MFMWA architectures that mitigate the detrimental impact of imperfect analog computations while realizing their potential benefits across various areas of AI, such as applications in computer vision. Through analysis, measurements from analog devices, and simulations of larger systems, we demonstrate orders of magnitude reduction in both computation and energy with accuracy similar to digital computers.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
The military is investigating methods to improve communication and agility in its multi-domain operations (MDO). Nascent popularity of Internet of Things (IoT) has gained traction in public and government domains. Its usage in MDO may revolutionize future battlefields and may enable strategic advantage. While this technology offers leverage to military capabilities, it comes with challenges where one is the uncertainty and associated risk. A key question is how can these uncertainties be addressed. Recently published studies proposed information camouflage to transform information from one data domain to another. As this is comparatively a new approach, we investigate challenges of such transformations and how these associated uncertainties can be detected and addressed, specifically unknown-unknowns to improve decision-making.
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.