Recent research has turned to Reinforcement Learning (RL) to solve challenging decision problems, as an alternative to hand-tuned heuristics. RL can learn good policies without the need for modeling the environment's dynamics. Despite this promise, RL remains an impractical solution for many real-world systems problems. A particularly challenging case occurs when the environment changes over time, i.e. it exhibits non-stationarity. In this work, we characterize the challenges introduced by non-stationarity, shed light on the range of approaches to them and develop a robust framework for addressing them to train RL agents in live systems. Such agents must explore and learn new environments, without hurting the system's performance, and remember them over time. To this end, our framework (i) identifies different environments encountered by the live system, (ii) triggers exploration when necessary, (iii) takes precautions to retain knowledge from prior environments, and (iv) employs safeguards to protect the system's performance when the RL agent makes mistakes. We apply our framework to two systems problems, straggler mitigation and adaptive video streaming, and evaluate it against a variety of alternative approaches using real-world and synthetic data. We show that all components of the framework are necessary to cope with non-stationarity and provide guidance on alternative design choices for each component.
Building systems that are good for society in the face of complex societal effects requires a dynamic approach. Recent approaches to machine learning (ML) documentation have demonstrated the promise of discursive frameworks for deliberation about these complexities. However, these developments have been grounded in a static ML paradigm, leaving the role of feedback and post-deployment performance unexamined. Meanwhile, recent work in reinforcement learning has shown that the effects of feedback and optimization objectives on system behavior can be wide-ranging and unpredictable. In this paper we sketch a framework for documenting deployed and iteratively updated learning systems, which we call Reward Reports. Taking inspiration from various contributions to the technical literature on reinforcement learning, we outline Reward Reports as living documents that track updates to design choices and assumptions behind what a particular automated system is optimizing for. They are intended to track dynamic phenomena arising from system deployment, rather than merely static properties of models or data. After presenting the elements of a Reward Report, we discuss a concrete example: Meta's BlenderBot 3 chatbot. Several others for game-playing (DeepMind's MuZero), content recommendation (MovieLens), and traffic control (Project Flow) are included in the appendix.
Applying reinforcement learning (RL) to traffic signal control (TSC) has become a promising solution. However, most RL-based methods focus solely on optimization within simulators and give little thought to deployment issues in the real world. Online RL-based methods, which require interaction with the environment, are limited in their interactions with the real-world environment. Additionally, acquiring an offline dataset for offline RL is challenging in the real world. Moreover, most real-world intersections prefer a cyclical phase structure. To address these challenges, we propose: (1) a cyclical offline dataset (COD), designed based on common real-world scenarios to facilitate easy collection; (2) an offline RL model called DataLight, capable of learning satisfactory control strategies from the COD; and (3) a method called Arbitrary To Cyclical (ATC), which can transform most RL-based methods into cyclical signal control. Extensive experiments using real-world datasets on simulators demonstrate that: (1) DataLight outperforms most existing methods and achieves comparable results with the best-performing method; (2) introducing ATC into some recent RL-based methods achieves satisfactory performance; and (3) COD is reliable, with DataLight remaining robust even with a small amount of data. These results suggest that the cyclical offline dataset might be enough for offline RL for TSC. Our proposed methods make significant contributions to the TSC field and successfully bridge the gap between simulation experiments and real-world applications. Our code is released on Github.
The flock-guidance problem enjoys a challenging structure where multiple optimization objectives are solved simultaneously. This usually necessitates different control approaches to tackle various objectives, such as guidance, collision avoidance, and cohesion. The guidance schemes, in particular, have long suffered from complex tracking-error dynamics. Furthermore, techniques that are based on linear feedback strategies obtained at equilibrium conditions either may not hold or degrade when applied to uncertain dynamic environments. Pre-tuned fuzzy inference architectures lack robustness under such unmodeled conditions. This work introduces an adaptive distributed technique for the autonomous control of flock systems. Its relatively flexible structure is based on online fuzzy reinforcement learning schemes which simultaneously target a number of objectives; namely, following a leader, avoiding collision, and reaching a flock velocity consensus. In addition to its resilience in the face of dynamic disturbances, the algorithm does not require more than the agent position as a feedback signal. The effectiveness of the proposed method is validated with two simulation scenarios and benchmarked against a similar technique from the literature.
Continuous-time Markov decision processes (CTMDPs) are canonical models to express sequential decision-making under dense-time and stochastic environments. When the stochastic evolution of the environment is only available via sampling, model-free reinforcement learning (RL) is the algorithm-of-choice to compute optimal decision sequence. RL, on the other hand, requires the learning objective to be encoded as scalar reward signals. Since doing such translations manually is both tedious and error-prone, a number of techniques have been proposed to translate high-level objectives (expressed in logic or automata formalism) to scalar rewards for discrete-time Markov decision processes (MDPs). Unfortunately, no automatic translation exists for CTMDPs. We consider CTMDP environments against the learning objectives expressed as omega-regular languages. Omega-regular languages generalize regular languages to infinite-horizon specifications and can express properties given in popular linear-time logic LTL. To accommodate the dense-time nature of CTMDPs, we consider two different semantics of omega-regular objectives: 1) satisfaction semantics where the goal of the learner is to maximize the probability of spending positive time in the good states, and 2) expectation semantics where the goal of the learner is to optimize the long-run expected average time spent in the ``good states" of the automaton. We present an approach enabling correct translation to scalar reward signals that can be readily used by off-the-shelf RL algorithms for CTMDPs. We demonstrate the effectiveness of the proposed algorithms by evaluating it on some popular CTMDP benchmarks with omega-regular objectives.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
While deep reinforcement learning (RL) has fueled multiple high-profile successes in machine learning, it is held back from more widespread adoption by its often poor data efficiency and the limited generality of the policies it produces. A promising approach for alleviating these limitations is to cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL. Meta-RL is most commonly studied in a problem setting where, given a distribution of tasks, the goal is to learn a policy that is capable of adapting to any new task from the task distribution with as little data as possible. In this survey, we describe the meta-RL problem setting in detail as well as its major variations. We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task. Using these clusters, we then survey meta-RL algorithms and applications. We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
Graph mining tasks arise from many different application domains, ranging from social networks, transportation, E-commerce, etc., which have been receiving great attention from the theoretical and algorithm design communities in recent years, and there has been some pioneering work using the hotly researched reinforcement learning (RL) techniques to address graph data mining tasks. However, these graph mining algorithms and RL models are dispersed in different research areas, which makes it hard to compare different algorithms with each other. In this survey, we provide a comprehensive overview of RL models and graph mining and generalize these algorithms to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method description, open-source codes, and benchmark datasets of GRL methods. Finally, we propose possible important directions and challenges to be solved in the future. This is the latest work on a comprehensive survey of GRL literature, and this work provides a global view for researchers as well as a learning resource for researchers outside the domain. In addition, we create an online open-source for both interested researchers who want to enter this rapidly developing domain and experts who would like to compare GRL methods.
Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.