亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The increasing global emphasis on sustainability and reducing carbon emissions is pushing governments and corporations to rethink their approach to data center design and operation. Given their high energy consumption and exponentially large computational workloads, data centers are prime candidates for optimizing power consumption, especially in areas such as cooling and IT energy usage. A significant challenge in this pursuit is the lack of a configurable and scalable thermal data center model that offers an end-to-end pipeline. Data centers consist of multiple IT components whose geometric configuration and heat dissipation make thermal modeling difficult. This paper presents PyDCM, a customizable Data Center Model implemented in Python, that allows users to create unique configurations of IT equipment with custom server specifications and geometric arrangements of IT cabinets. The use of vectorized thermal calculations makes PyDCM orders of magnitude faster (30 times) than current Energy Plus modeling implementations and scales sublinearly with the number of CPUs. Also, PyDCM enables the use of Deep Reinforcement Learning via the Gymnasium wrapper to optimize data center cooling and offers a user-friendly platform for testing various data center design prototypes.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 知識 (knowledge) · MNIST (數據集) · 潛在 · 地球 ·
2023 年 12 月 28 日

Earth system forecasting has traditionally relied on complex physical models that are computationally expensive and require significant domain expertise. In the past decade, the unprecedented increase in spatiotemporal Earth observation data has enabled data-driven forecasting models using deep learning techniques. These models have shown promise for diverse Earth system forecasting tasks but either struggle with handling uncertainty or neglect domain-specific prior knowledge, resulting in averaging possible futures to blurred forecasts or generating physically implausible predictions. To address these limitations, we propose a two-stage pipeline for probabilistic spatiotemporal forecasting: 1) We develop PreDiff, a conditional latent diffusion model capable of probabilistic forecasts. 2) We incorporate an explicit knowledge alignment mechanism to align forecasts with domain-specific physical constraints. This is achieved by estimating the deviation from imposed constraints at each denoising step and adjusting the transition distribution accordingly. We conduct empirical studies on two datasets: N-body MNIST, a synthetic dataset with chaotic behavior, and SEVIR, a real-world precipitation nowcasting dataset. Specifically, we impose the law of conservation of energy in N-body MNIST and anticipated precipitation intensity in SEVIR. Experiments demonstrate the effectiveness of PreDiff in handling uncertainty, incorporating domain-specific prior knowledge, and generating forecasts that exhibit high operational utility.

Despite the current surge of interest in autonomous robotic systems, robot activity recognition within restricted indoor environments remains a formidable challenge. Conventional methods for detecting and recognizing robotic arms' activities often rely on vision-based or light detection and ranging (LiDAR) sensors, which require line-of-sight (LoS) access and may raise privacy concerns, for example, in nursing facilities. This research pioneers an innovative approach harnessing channel state information (CSI) measured from WiFi signals, subtly influenced by the activity of robotic arms. We developed an attention-based network to classify eight distinct activities performed by a Franka Emika robotic arm in different situations. Our proposed bidirectional vision transformer-concatenated (BiVTC) methodology aspires to predict robotic arm activities accurately, even when trained on activities with different velocities, all without dependency on external or internal sensors or visual aids. Considering the high dependency of CSI data to the environment, motivated us to study the problem of sniffer location selection, by systematically changing the sniffer's location and collecting different sets of data. Finally, this paper also marks the first publication of the CSI data of eight distinct robotic arm activities, collectively referred to as RoboFiSense. This initiative aims to provide a benchmark dataset and baselines to the research community, fostering advancements in the field of robotics sensing.

Large Language Models (LLMs) exhibit a unique phenomenon known as emergent abilities, demonstrating adeptness across numerous tasks, from text summarization to code generation. While these abilities open up novel avenues in software design and crafting, their incorporation presents substantial challenges. Developers face decisions regarding the use of LLMs for directly performing tasks within applications as well as for generating and executing code to accomplish these tasks. Moreover, effective prompt design becomes a critical concern, given the necessity of extracting data from natural language outputs. To address these complexities, this paper introduces AskIt, a domain-specific language (DSL) specifically designed for LLMs. AskIt simplifies LLM integration by providing a unified interface that not only allows for direct task execution using LLMs but also supports the entire cycle of code generation and execution. This dual capability is achieved through (1) type-guided output control, (2) template-based function definitions, and (3) prompt generation for both usage modes. Our evaluations underscore AskIt's effectiveness. Across 50 tasks, AskIt generated concise prompts, achieving a 16.14 % reduction in prompt length compared to benchmarks. Additionally, by enabling a seamless transition between using LLMs directly in applications and for generating code, AskIt achieved significant efficiency improvements, as observed in our GSM8K benchmark experiments. The implementations of AskIt in TypeScript and Python are available at //github.com/katsumiok/ts-askit and //github.com/katsumiok/pyaskit, respectively.

The multimodal recommendation has gradually become the infrastructure of online media platforms, enabling them to provide personalized service to users through a joint modeling of user historical behaviors (e.g., purchases, clicks) and item various modalities (e.g., visual and textual). The majority of existing studies typically focus on utilizing modal features or modal-related graph structure to learn user local interests. Nevertheless, these approaches encounter two limitations: (1) Shared updates of user ID embeddings result in the consequential coupling between collaboration and multimodal signals; (2) Lack of exploration into robust global user interests to alleviate the sparse interaction problems faced by local interest modeling. To address these issues, we propose a novel Local and Global Graph Learning-guided Multimodal Recommender (LGMRec), which jointly models local and global user interests. Specifically, we present a local graph embedding module to independently learn collaborative-related and modality-related embeddings of users and items with local topological relations. Moreover, a global hypergraph embedding module is designed to capture global user and item embeddings by modeling insightful global dependency relations. The global embeddings acquired within the hypergraph embedding space can then be combined with two decoupled local embeddings to improve the accuracy and robustness of recommendations. Extensive experiments conducted on three benchmark datasets demonstrate the superiority of our LGMRec over various state-of-the-art recommendation baselines, showcasing its effectiveness in modeling both local and global user interests.

Social platforms have emerged as crucial platforms for disseminating information and discussing real-life social events, offering researchers an excellent opportunity to design and implement novel event detection frameworks. However, most existing approaches only exploit keyword burstiness or network structures to detect unspecified events. Thus, they often need help identifying unknown events regarding the challenging nature of events and social data. Social data, e.g., tweets, is characterized by misspellings, incompleteness, word sense ambiguation, irregular language, and variation in aspects of opinions. Moreover, extracting discriminative features and patterns for evolving events by exploiting the limited structural knowledge is almost infeasible. To address these challenges, in this paper, we propose a novel framework, namely EnrichEvent, that leverages the linguistic and contextual representations of streaming social data. In particular, we leverage contextual and linguistic knowledge to detect semantically related tweets and enhance the effectiveness of the event detection approaches. Eventually, our proposed framework produces cluster chains for each event to show the evolving variation of the event through time. We conducted extensive experiments to evaluate our framework, validating its high performance and effectiveness in detecting and distinguishing unspecified social events.

Many organizations rely on data from government and third-party sources, and those sources rarely follow the same data formatting. This introduces challenges in integrating data from multiple sources or aligning external sources with internal databases. Commercial database systems do not offer adequate support for integrating data from heterogeneous sources, and manual integration is both time-consuming and inefficient. State-of-the-art data integration approaches that rely on similarity functions and textual transformations often fail to handle challenging cases where multiple mappings are required, or the mappings go beyond simple textual transformations. In this paper, we study the potentials of deep neural models for transforming tables for joinability. In particular, we cast the problem as a prediction task and develop a framework that leverages large deep-learning language models to transform tabular data from a source formatting to a desired target representation. Our framework can efficiently learn the patterns for mapping a source formatting into an expected target using just a few examples, which can then be used for tasks such as table joining, filling in missing values, and error detection. Compared to state-of-the-art mapping and joining approaches, our framework delivers noticeably more accurate and scalable performance on both real-world and synthetic datasets. Our experimental evaluation also shows that the performance of the proposed framework using our fine-tuned model is at par or better than large language models such as GPT-3, despite the significant difference in size, and that using large language models within our framework improves their performance.

One persistent challenge in deep learning based speech emotion recognition (SER) is the unconscious encoding of emotion-irrelevant factors (e.g., speaker or phonetic variability), which limits the generalization of SER in practical use. In this paper, we propose DSNet, a Disentangled Siamese Network with neutral calibration, to meet the demand for a more robust and explainable SER model. Specifically, we introduce an orthogonal feature disentanglement module to explicitly project the high-level representation into two distinct subspaces. Later, we propose a novel neutral calibration mechanism to encourage one subspace to capture sufficient emotion-irrelevant information. In this way, the other one can better isolate and emphasize the emotion-relevant information within speech signals. Experimental results on two popular benchmark datasets demonstrate the superiority of DSNet over various state-of-the-art methods for speaker-independent SER.

The advancement in healthcare has shifted focus toward patient-centric approaches, particularly in self-care and patient education, facilitated by access to Electronic Health Records (EHR). However, medical jargon in EHRs poses significant challenges in patient comprehension. To address this, we introduce a new task of automatically generating lay definitions, aiming to simplify complex medical terms into patient-friendly lay language. We first created the README dataset, an extensive collection of over 20,000 unique medical terms and 300,000 mentions, each offering context-aware lay definitions manually annotated by domain experts. We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality. We then used README as the training data for models and leveraged a Retrieval-Augmented Generation (RAG) method to reduce hallucinations and improve the quality of model outputs. Our extensive automatic and human evaluations demonstrate that open-source mobile-friendly models, when fine-tuned with high-quality data, are capable of matching or even surpassing the performance of state-of-the-art closed-source large language models like ChatGPT. This research represents a significant stride in closing the knowledge gap in patient education and advancing patient-centric healthcare solutions

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司