亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Concentric Tube Robots (CTR) have the potential to enable effective minimally invasive surgeries. While extensive modeling and control schemes have been proposed in the past decade, limited efforts have been made to improve the trajectory tracking performance from the perspective of manipulability , which can be critical to generate safe motion and feasible actuator commands. In this paper, we propose a gradient-based redundancy resolution framework that optimizes velocity/compliance manipulability-based performance indices during trajectory tracking for a kinematically redundant CTR. We efficiently calculate the gradients of manipulabilities by propagating the first- and second-order derivatives of state variables of the Cosserat rod model along the CTR arc length, reducing the gradient computation time by 68\% compared to finite difference method. Task-specific performance indices are optimized by projecting the gradient into the null-space of trajectory tracking. The proposed method is validated in three exemplary scenarios that involve trajectory tracking, obstacle avoidance, and external load compensation, respectively. Simulation results show that the proposed method is able to accomplish the required tasks while commonly used redundancy resolution approaches underperform or even fail.

相關內容

Variational Autoencoders and their many variants have displayed impressive ability to perform dimensionality reduction, often achieving state-of-the-art performance. Many current methods however, struggle to learn good representations in High Dimensional, Low Sample Size (HDLSS) tasks, which is an inherently challenging setting. We address this challenge by using an ensemble of lightweight VAEs to learn posteriors over subsets of the feature-space, which get aggregated into a joint posterior in a novel divide-and-conquer approach. Specifically, we present an alternative factorisation of the joint posterior that induces a form of implicit data augmentation that yields greater sample efficiency. Through a series of experiments on eight real-world datasets, we show that our method learns better latent representations in HDLSS settings, which leads to higher accuracy in a downstream classification task. Furthermore, we verify that our approach has a positive effect on disentanglement and achieves a lower estimated Total Correlation on learnt representations. Finally, we show that our approach is robust to partial features at inference, exhibiting little performance degradation even with most features missing.

Automating warehouse operations can reduce logistics overhead costs, ultimately driving down the final price for consumers, increasing the speed of delivery, and enhancing the resiliency to workforce fluctuations. The past few years have seen increased interest in automating such repeated tasks but mostly in controlled settings. Tasks such as picking objects from unstructured, cluttered piles have only recently become robust enough for large-scale deployment with minimal human intervention. This paper demonstrates a large-scale package manipulation from unstructured piles in Amazon Robotics' Robot Induction (Robin) fleet, which utilizes a pick success predictor trained on real production data. Specifically, the system was trained on over 394K picks. It is used for singulating up to 5 million packages per day and has manipulated over 200 million packages during this paper's evaluation period. The developed learned pick quality measure ranks various pick alternatives in real-time and prioritizes the most promising ones for execution. The pick success predictor aims to estimate from prior experience the success probability of a desired pick by the deployed industrial robotic arms in cluttered scenes containing deformable and rigid objects with partially known properties. It is a shallow machine learning model, which allows us to evaluate which features are most important for the prediction. An online pick ranker leverages the learned success predictor to prioritize the most promising picks for the robotic arm, which are then assessed for collision avoidance. This learned ranking process is demonstrated to overcome the limitations and outperform the performance of manually engineered and heuristic alternatives. To the best of the authors' knowledge, this paper presents the first large-scale deployment of learned pick quality estimation methods in a real production system.

Accurate time series forecasting is a fundamental challenge in data science. It is often affected by external covariates such as weather or human intervention, which in many applications, may be predicted with reasonable accuracy. We refer to them as predicted future covariates. However, existing methods that attempt to predict time series in an iterative manner with autoregressive models end up with exponential error accumulations. Other strategies hat consider the past and future in the encoder and decoder respectively limit themselves by dealing with the historical and future data separately. To address these limitations, a novel feature representation strategy -- shifting -- is proposed to fuse the past data and future covariates such that their interactions can be considered. To extract complex dynamics in time series, we develop a parallel deep learning framework composed of RNN and CNN, both of which are used hierarchically. We also utilize the skip connection technique to improve the model's performance. Extensive experiments on three datasets reveal the effectiveness of our method. Finally, we demonstrate the model interpretability using the Grad-CAM algorithm.

As an efficient alternative to conventional full finetuning, parameter-efficient finetuning (PEFT) is becoming the prevailing method to adapt pretrained language models. In PEFT, a lightweight module is learned on each dataset while the underlying pretrained language model remains unchanged, resulting in multiple compact modules representing diverse skills when applied to various domains and tasks. In this paper, we propose to compose these parameter-efficient modules through linear arithmetic operations in the weight space, thereby integrating different module capabilities. Specifically, we first define addition and negation operators for the module, and then further compose these two basic operators to perform flexible arithmetic. Our approach requires \emph{no additional training} and enables highly flexible module composition. We apply different arithmetic operations to compose the parameter-efficient modules for (1) distribution generalization, (2) multi-tasking, (3) unlearning, and (4) domain transfer. Additionally, we extend our approach to detoxify Alpaca-LoRA, the latest instruction-tuned large language model based on LLaMA. Empirical results demonstrate that our approach produces new and effective parameter-efficient modules that significantly outperform existing ones across all settings.

We develop a new model for spatial random field reconstruction of a binary-valued spatial phenomenon. In our model, sensors are deployed in a wireless sensor network across a large geographical region. Each sensor measures a non-Gaussian inhomogeneous temporal process which depends on the spatial phenomenon. Two types of sensors are employed: one collects point observations at specific time points, while the other collects integral observations over time intervals. Subsequently, the sensors transmit these time-series observations to a Fusion Center (FC), and the FC infers the spatial phenomenon from these observations. We show that the resulting posterior predictive distribution is intractable and develop a tractable two-step procedure to perform inference. Firstly, we develop algorithms to perform approximate Likelihood Ratio Tests on the time-series observations, compressing them to a single bit for both point sensors and integral sensors. Secondly, once the compressed observations are transmitted to the FC, we utilize a Spatial Best Linear Unbiased Estimator (S-BLUE) to reconstruct the binary spatial random field at any desired spatial location. The performance of the proposed approach is studied using simulation. We further illustrate the effectiveness of our method using a weather dataset from the National Environment Agency (NEA) of Singapore with fields including temperature and relative humidity.

Indirect simultaneous positioning (ISP), where internal tissue points are placed at desired locations indirectly through the manipulation of boundary points, is a type of subtask frequently performed in robotic surgeries. Although challenging due to complex tissue dynamics, automating the task can potentially reduce the workload of surgeons. This paper presents a sim-to-real framework for learning to automate the task without interacting with a real environment, and for planning preoperatively to find the grasping points that minimize local tissue deformation. A control policy is learned using deep reinforcement learning (DRL) in the FEM-based simulation environment and transferred to real-world situation. Grasping points are planned in the simulator by utilizing the trained policy using Bayesian optimization (BO). Inconsistent simulation performance is overcome by formulating the problem as a state augmented Markov decision process (MDP). Experimental results show that the learned policy places the internal tissue points accurately, and that the planned grasping points yield small tissue deformation among the trials. The proposed learning and planning scheme is able to automate internal tissue point manipulation in surgeries and has the potential to be generalized to complex surgical scenarios.

The small size, high dexterity, and intrinsic compliance of continuum robots (CRs) make them well suited for constrained environments. Solving the inverse kinematics (IK), that is finding robot joint configurations that satisfy desired position or pose queries, is a fundamental challenge in motion planning, control, and calibration for any robot structure. For CRs, the need to avoid obstacles in tightly confined workspaces greatly complicates the search for feasible IK solutions. Without an accurate initialization or multiple re-starts, existing algorithms often fail to find a solution. We present CIDGIKc (Convex Iteration for Distance-Geometric Inverse Kinematics for Continuum Robots), an algorithm that solves these nonconvex feasibility problems with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. CIDGIKc is enabled by a novel distance-geometric parameterization of constant curvature segment geometry for CRs with extensible segments. The resulting IK formulation involves only quadratic expressions and can efficiently incorporate a large number of collision avoidance constraints. Our experimental results demonstrate >98% solve success rates within complex, highly cluttered environments which existing algorithms cannot account for.

Continuum robots suffer large deflections due to internal and external forces. Accurate modeling of their passive compliance is necessary for accurate environmental interaction, especially in scenarios where direct force sensing is not practical. This paper focuses on deriving analytic formulations for the compliance of continuum robots that can be modeled as Kirchhoff rods. Compared to prior works, the approach presented herein is not subject to the constant-curvature assumptions to derive the configuration space compliance, and we do not rely on computationally-expensive finite difference approximations to obtain the task space compliance. Using modal approximations over curvature space and Lie group integration, we obtain closed-form expressions for the task and configuration space compliance matrices of continuum robots, thereby bridging the gap between constant-curvature analytic formulations of configuration space compliance and variable curvature task space compliance. We first present an analytic expression for the compliance of a single Kirchhoff rod. We then extend this formulation for computing both the task space and configuration space compliance of a tendon-actuated continuum robot. We then use our formulation to study the tradeoffs between computation cost and modeling accuracy as well as the loss in accuracy from neglecting the Jacobian derivative term in the compliance model. Finally, we experimentally validate the model on a tendon-actuated continuum segment, demonstrating the model's ability to predict passive deflections with error below 11.5\% percent of total arc length.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司