亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies the infinite-dimensional Bayesian inference method with Hadamard fractional total variation-Gaussian (HFTG) prior for solving inverse problems. First, Hadamard fractional Sobolev space is established and proved to be a separable Banach space under some mild conditions. Afterwards, the HFTG prior is constructed in this separable fractional space, and the proposed novel hybrid prior not only captures the texture details of the region and avoids step effects, but also provides a complete theoretical analysis in the infinite dimensional Bayesian inversion. Based on the HFTG prior, the well-posedness and finite-dimensional approximation of the posterior measure of the Bayesian inverse problem are given, and samples are extracted from the posterior distribution using the standard pCN algorithm. Finally, numerical results under different models indicate that the Bayesian inference method with HFTG prior is effective and accurate.

相關內容

貝(bei)(bei)葉(xie)斯推斷(BAYESIAN INFERENCE)是一種(zhong)應用于不確定性條件下的決策的統(tong)計(ji)方法。貝(bei)(bei)葉(xie)斯推斷的顯著特征(zheng)是,為了得到一個統(tong)計(ji)結論能夠利(li)用先驗(yan)信息和樣本信息。

Bayesian calibration is widely used for inverse analysis and uncertainty analysis for complex systems in the presence of both computer models and observation data. In the present work, we focus on large-scale fluid-structure interaction systems characterized by large structural deformations. Numerical methods to solve these problems, including embedded/immersed boundary methods, are typically not differentiable and lack smoothness. We propose a framework that is built on unscented Kalman filter/inversion to efficiently calibrate and provide uncertainty estimations of such complicated models with noisy observation data. The approach is derivative-free and non-intrusive, and is of particular value for the forward model that is computationally expensive and provided as a black box which is impractical to differentiate. The framework is demonstrated and validated by successfully calibrating the model parameters of a piston problem and identifying the damage field of an airfoil under transonic buffeting.

We study a fourth-order div problem and its approximation by the discontinuous Petrov-Galerkin method with optimal test functions. We present two variants, based on first and second-order systems. In both cases we prove well-posedness of the formulation and quasi-optimal convergence of the approximation. Our analysis includes the fully-discrete schemes with approximated test functions, for general dimension and polynomial degree in the first-order case, and for two dimensions and lowest-order approximation in the second-order case. Numerical results illustrate the performance for quasi-uniform and adaptively refined meshes.

In this paper, we study deep neural networks (DNNs) for solving high-dimensional evolution equations with oscillatory solutions. Different from deep least-squares methods that deal with time and space variables simultaneously, we propose a deep adaptive basis Galerkin (DABG) method which employs the spectral-Galerkin method for time variable by tensor-product basis for oscillatory solutions and the deep neural network method for high-dimensional space variables. The proposed method can lead to a linear system of differential equations having unknown DNNs that can be trained via the loss function. We establish a posterior estimates of the solution error which is bounded by the minimal loss function and the term $O(N^{-m})$, where $N$ is the number of basis functions and $m$ characterizes the regularity of the equation, and show that if the true solution is a Barron-type function, the error bound converges to zero as $M=O(N^p)$ approaches to infinity where $M$ is the width of the used networks and $p$ is a positive constant. Numerical examples including high-dimensional linear parabolic and hyperbolic equations, and nonlinear Allen-Cahn equation are presented to demonstrate the performance of the proposed DABG method is better than that of existing DNNs.

Mining maximal subgraphs with cohesive structures from a bipartite graph has been widely studied. One important cohesive structure on bipartite graphs is k-biplex, where each vertex on one side disconnects at most k vertices on the other side. In this paper, we study the maximal k-biplex enumeration problem which enumerates all maximal k-biplexes. Existing methods suffer from efficiency and/or scalability issues and have the time of waiting for the next output exponential w.r.t. the size of the input bipartite graph (i.e., an exponential delay). In this paper, we adopt a reverse search framework called bTraversal, which corresponds to a depth-first search (DFS) procedure on an implicit solution graph on top of all maximal k-biplexes. We then develop a series of techniques for improving and implementing this framework including (1) carefully selecting an initial solution to start DFS, (2) pruning the vast majority of links from the solution graph of bTraversal, and (3) implementing abstract procedures of the framework. The resulting algorithm is called iTraversal, which has its underlying solution graph significantly sparser than (around 0.1% of) that of bTraversal. Besides, iTraversal provides a guarantee of polynomial delay. Our experimental results on real and synthetic graphs, where the largest one contains more than one billion edges, show that our algorithm is up to four orders of magnitude faster than existing algorithms.

We study Hibridizable Discontinuous Galerkin (HDG) discretizations for a class of non-linear interior elliptic boundary value problems posed in curved domains where both the source term and the diffusion coefficient are non-linear. We consider the cases where the non-linear diffusion coefficient depends on the solution and on the gradient of the solution. To sidestep the need for curved elements, the discrete solution is computed on a polygonal subdomain that is not assumed to interpolate the true boundary, giving rise to an unfitted computational mesh. We show that, under mild assumptions on the source term and the computational domain, the discrete systems are well posed. Furthermore, we provide a priori error estimates showing that the discrete solution will have optimal order of convergence as long as the distance between the curved boundary and the computational boundary remains of the same order of magnitude as the mesh parameter.

The Ensemble Kalman Filter (EnKF) belongs to the class of iterative particle filtering methods and can be used for solving control--to--observable inverse problems. In this context, the EnKF is known as Ensemble Kalman Inversion (EKI). In recent years several continuous limits in the number of iteration and particles have been performed in order to study properties of the method. In particular, a one--dimensional linear stability analysis reveals possible drawbacks in the phase space of moments provided by the continuous limits of the EKI, but observed also in the multi--dimensional setting. In this work we address this issue by introducing a stabilization of the dynamics which leads to a method with globally asymptotically stable solutions. We illustrate the performance of the stabilized version by using test inverse problems from the literature and comparing it with the classical continuous limit formulation of the method.

We investigate data-driven forward-inverse problems for Yajima-Oikawa (YO) system by employing two technologies which improve the performance of neural network in deep physics-informed neural network (PINN), namely neuron-wise locally adaptive activation functions and $L^2$ norm parameter regularization. Indeed, we not only recover three different forms of vector rogue waves (RWs) by means of three distinct initial-boundary value conditions in the forward problem of YO system, including bright-bright RWs, intermediate-bright RWs and dark-bright RWs, but also study the inverse problem of YO system by using training data with different noise intensity. In order to deal with the problem that the capacity of learning unknown parameters is not ideal when the PINN with only locally adaptive activation functions utilizes training data with noise interference in the inverse problem of YO system, thus we introduce $L^2$ norm regularization, which can drive the weights closer to origin, into PINN with locally adaptive activation functions, then find that the PINN model with two strategies shows amazing training effect by using training data with noise interference to investigate the inverse problem of YO system.

Highly oscillatory integrals of composite type arise in electronic engineering and their calculations is a challenging problem. In this paper, we propose two Gaussian quadrature rules for computing such integrals. The first one is constructed based on the classical theory of orthogonal polynomials and its nodes and weights can be computed efficiently by using tools of numerical linear algebra. We show that the rate of convergence of this rule depends solely on the regularity of the non-oscillatory part of the integrand. The second one is constructed with respect to a sign-changing function and the classical theory of Gaussian quadrature can not be used anymore. We explore theoretical properties of this Gaussian quadrature, including the trajectories of the quadrature nodes and the convergence rate of these nodes to the endpoints of the integration interval, and prove its asymptotic error estimate under suitable hypotheses. Numerical experiments are presented to demonstrate the performance of the proposed methods.

We propose a theoretical framework for investigating a modeling error caused by numerical integration in the learning process of dynamics. Recently, learning equations of motion to describe dynamics from data using neural networks has been attracting attention. During such training, numerical integration is used to compare the data with the solution of the neural network model; however, discretization errors due to numerical integration prevent the model from being trained correctly. In this study, we formulate the modeling error using the Dahlquist test equation that is commonly used in the analysis of numerical methods and apply it to some of the Runge--Kutta methods.

In recent years, the field of machine learning has made phenomenal progress in the pursuit of simulating real-world data generation processes. One notable example of such success is the variational autoencoder (VAE). In this work, with a small shift in perspective, we leverage and adapt VAEs for a different purpose: uncertainty quantification in scientific inverse problems. We introduce UQ-VAE: a flexible, adaptive, hybrid data/model-informed framework for training neural networks capable of rapid modelling of the posterior distribution representing the unknown parameter of interest. Specifically, from divergence-based variational inference, our framework is derived such that most of the information usually present in scientific inverse problems is fully utilized in the training procedure. Additionally, this framework includes an adjustable hyperparameter that allows selection of the notion of distance between the posterior model and the target distribution. This introduces more flexibility in controlling how optimization directs the learning of the posterior model. Further, this framework possesses an inherent adaptive optimization property that emerges through the learning of the posterior uncertainty.

北京阿比特科技有限公司