亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online customer data provides valuable information for product design and marketing research, as it can reveal the preferences of customers. However, analyzing these data using artificial intelligence (AI) for data-driven design is a challenging task due to potential concealed patterns. Moreover, in these research areas, most studies are only limited to finding customers' needs. In this study, we propose a game theory machine learning (ML) method that extracts comprehensive design implications for product development. The method first uses a genetic algorithm to select, rank, and combine product features that can maximize customer satisfaction based on online ratings. Then, we use SHAP (SHapley Additive exPlanations), a game theory method that assigns a value to each feature based on its contribution to the prediction, to provide a guideline for assessing the importance of each feature for the total satisfaction. We apply our method to a real-world dataset of laptops from Kaggle, and derive design implications based on the results. Our approach tackles a major challenge in the field of multi-criteria decision making and can help product designers and marketers, to understand customer preferences better with less data and effort. The proposed method outperforms benchmark methods in terms of relevant performance metrics.

相關內容

Decision making and learning in the presence of uncertainty has attracted significant attention in view of the increasing need to achieve robust and reliable operations. In the case where uncertainty stems from the presence of adversarial attacks this need is becoming more prominent. In this paper we focus on linear and nonlinear classification problems and propose a novel adversarial training method for robust classifiers, inspired by Support Vector Machine (SVM) margins. We view robustness under a data driven lens, and derive finite sample complexity bounds for both linear and non-linear classifiers in binary and multi-class scenarios. Notably, our bounds match natural classifiers' complexity. Our algorithm minimizes a worst-case surrogate loss using Linear Programming (LP) and Second Order Cone Programming (SOCP) for linear and non-linear models. Numerical experiments on the benchmark MNIST and CIFAR10 datasets show our approach's comparable performance to state-of-the-art methods, without needing adversarial examples during training. Our work offers a comprehensive framework for enhancing binary linear and non-linear classifier robustness, embedding robustness in learning under the presence of adversaries.

We study a multi-server queueing system with a periodic arrival rate and customers whose joining decision is based on their patience and a delay proxy. Specifically, each customer has a patience level sampled from a common distribution. Upon arrival, they receive an estimate of their delay before joining service and then join the system only if this delay is not more than their patience, otherwise they balk. The main objective is to estimate the parameters pertaining to the arrival rate and patience distribution. Here the complication factor is that this inference should be performed based on the observed process only, i.e., balking customers remain unobserved. We set up a likelihood function of the state dependent effective arrival process (i.e., corresponding to the customers who join), establish strong consistency of the MLE, and derive the asymptotic distribution of the estimation error. Due to the intrinsic non-stationarity of the Poisson arrival process, the proof techniques used in previous work become inapplicable. The novelty of the proving mechanism in this paper lies in the procedure of constructing i.i.d. objects from dependent samples by decomposing the sample path into i.i.d. regeneration cycles. The feasibility of the MLE-approach is discussed via a sequence of numerical experiments, for multiple choices of functions which provide delay estimates. In particular, it is observed that the arrival rate is best estimated at high service capacities, and the patience distribution is best estimated at lower service capacities.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

Diabetes, a pervasive and enduring health challenge, imposes significant global implications on health, financial healthcare systems, and societal well-being. This study undertakes a comprehensive exploration of various structural learning algorithms to discern causal pathways amongst potential risk factors influencing diabetes progression. The methodology involves the application of these algorithms to relevant diabetes data, followed by the conversion of their output graphs into Causal Bayesian Networks (CBNs), enabling predictive analysis and the evaluation of discrepancies in the effect of hypothetical interventions within our context-specific case study. This study highlights the substantial impact of algorithm selection on intervention outcomes. To consolidate insights from diverse algorithms, we employ a model-averaging technique that helps us obtain a unique causal model for diabetes derived from a varied set of structural learning algorithms. We also investigate how each of those individual graphs, as well as the average graph, compare to the structures elicited by a domain expert who categorised graph edges into high confidence, moderate, and low confidence types, leading into three individual graphs corresponding to the three levels of confidence. The resulting causal model and data are made available online, and serve as a valuable resource and a guide for informed decision-making by healthcare practitioners, offering a comprehensive understanding of the interactions between relevant risk factors and the effect of hypothetical interventions. Therefore, this research not only contributes to the academic discussion on diabetes, but also provides practical guidance for healthcare professionals in developing efficient intervention and risk management strategies.

We present a general refinement of the Cauchy-Schwarz inequality over complete inner product spaces and show that it can be of interest for some statistical applications. This generalizes and simplifies previous results on the same subject.

We propose a material design method via gradient-based optimization on compositions, overcoming the limitations of traditional methods: exhaustive database searches and conditional generation models. It optimizes inputs via backpropagation, aligning the model's output closely with the target property and facilitating the discovery of unlisted materials and precise property determination. Our method is also capable of adaptive optimization under new conditions without retraining. Applying to exploring high-Tc superconductors, we identified potential compositions beyond existing databases and discovered new hydrogen superconductors via conditional optimization. This method is versatile and significantly advances material design by enabling efficient, extensive searches and adaptability to new constraints.

Although there are obstacles related to obtaining data, ensuring model precision, and upholding ethical standards, the advantages of utilizing machine learning to generate predictive models for unemployment rates in developing nations amid the implementation of Industry 4.0 (I4.0) are noteworthy. This research delves into the concept of utilizing machine learning techniques through a predictive conceptual model to understand and address factors that contribute to unemployment rates in developing nations during the implementation of I4.0. A thorough examination of the literature was carried out through a literature review to determine the economic and social factors that have an impact on the unemployment rates in developing nations. The examination of the literature uncovered that considerable influence on unemployment rates in developing nations is attributed to elements such as economic growth, inflation, population increase, education levels, and technological progress. A predictive conceptual model was developed that indicates factors that contribute to unemployment in developing nations can be addressed by using techniques of machine learning like regression analysis and neural networks when adopting I4.0. The study's findings demonstrated the effectiveness of the proposed predictive conceptual model in accurately understanding and addressing unemployment rate factors within developing nations when deploying I4.0. The model serves a dual purpose of predicting future unemployment rates and tracking the advancement of reducing unemployment rates in emerging economies. By persistently conducting research and improvements, decision-makers and enterprises can employ these patterns to arrive at more knowledgeable judgments that can advance the growth of the economy, generation of employment, and alleviation of poverty specifically in emerging nations.

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.

We integrate machine learning approaches with nonlinear time series analysis, specifically utilizing recurrence measures to classify various dynamical states emerging from time series. We implement three machine learning algorithms Logistic Regression, Random Forest, and Support Vector Machine for this study. The input features are derived from the recurrence quantification of nonlinear time series and characteristic measures of the corresponding recurrence networks. For training and testing we generate synthetic data from standard nonlinear dynamical systems and evaluate the efficiency and performance of the machine learning algorithms in classifying time series into periodic, chaotic, hyper-chaotic, or noisy categories. Additionally, we explore the significance of input features in the classification scheme and find that the features quantifying the density of recurrence points are the most relevant. Furthermore, we illustrate how the trained algorithms can successfully predict the dynamical states of two variable stars, SX Her and AC Her from the data of their light curves.

Ever since the seminal work of R. A. Fisher and F. Yates, factorial designs have been an important experimental tool to simultaneously estimate the effects of multiple treatment factors. In factorial designs, the number of treatment combinations grows exponentially with the number of treatment factors, which motivates the forward selection strategy based on the sparsity, hierarchy, and heredity principles for factorial effects. Although this strategy is intuitive and has been widely used in practice, its rigorous statistical theory has not been formally established. To fill this gap, we establish design-based theory for forward factor selection in factorial designs based on the potential outcome framework. We not only prove a consistency property for the factor selection procedure but also discuss statistical inference after factor selection. In particular, with selection consistency, we quantify the advantages of forward selection based on asymptotic efficiency gain in estimating factorial effects. With inconsistent selection in higher-order interactions, we propose two strategies and investigate their impact on subsequent inference. Our formulation differs from the existing literature on variable selection and post-selection inference because our theory is based solely on the physical randomization of the factorial design and does not rely on a correctly specified outcome model.

北京阿比特科技有限公司