Existing Machine Learning approaches for local citation recommendation directly map or translate a query, which is typically a claim or an entity mention, to citation-worthy research papers. Within such a formulation, it is challenging to pinpoint why one should cite a specific research paper for a particular query, leading to limited recommendation interpretability. To alleviate this, we introduce the evidence-grounded local citation recommendation task, where the target latent space comprises evidence spans for recommending specific papers. Using a distantly-supervised evidence retrieval and multi-step re-ranking framework, our proposed system, ILCiteR, recommends papers to cite for a query grounded on similar evidence spans extracted from the existing research literature. Unlike past formulations that simply output recommendations, ILCiteR retrieves ranked lists of evidence span and recommended paper pairs. Secondly, previously proposed neural models for citation recommendation require expensive training on massive labeled data, ideally after every significant update to the pool of candidate papers. In contrast, ILCiteR relies solely on distant supervision from a dynamic evidence database and pre-trained Transformer-based Language Models without any model training. We contribute a novel dataset for the evidence-grounded local citation recommendation task and demonstrate the efficacy of our proposed conditional neural rank-ensembling approach for re-ranking evidence spans.
Graph Neural Networks (GNNs) are emerging as a formidable tool for processing non-euclidean data across various domains, ranging from social network analysis to bioinformatics. Despite their effectiveness, their adoption has not been pervasive because of scalability challenges associated with large-scale graph datasets, particularly when leveraging message passing. To tackle these challenges, we introduce NeuraChip, a novel GNN spatial accelerator based on Gustavson's algorithm. NeuraChip decouples the multiplication and addition computations in sparse matrix multiplication. This separation allows for independent exploitation of their unique data dependencies, facilitating efficient resource allocation. We introduce a rolling eviction strategy to mitigate data idling in on-chip memory as well as address the prevalent issue of memory bloat in sparse graph computations. Furthermore, the compute resource load balancing is achieved through a dynamic reseeding hash-based mapping, ensuring uniform utilization of computing resources agnostic of sparsity patterns. Finally, we present NeuraSim, an open-source, cycle-accurate, multi-threaded, modular simulator for comprehensive performance analysis. Overall, NeuraChip presents a significant improvement, yielding an average speedup of 22.1x over Intel's MKL, 17.1x over NVIDIA's cuSPARSE, 16.7x over AMD's hipSPARSE, and 1.5x over prior state-of-the-art SpGEMM accelerator and 1.3x over GNN accelerator. The source code for our open-sourced simulator and performance visualizer is publicly accessible on GitHub //neurachip.us
We present NeRF-XL, a principled method for distributing Neural Radiance Fields (NeRFs) across multiple GPUs, thus enabling the training and rendering of NeRFs with an arbitrarily large capacity. We begin by revisiting existing multi-GPU approaches, which decompose large scenes into multiple independently trained NeRFs, and identify several fundamental issues with these methods that hinder improvements in reconstruction quality as additional computational resources (GPUs) are used in training. NeRF-XL remedies these issues and enables the training and rendering of NeRFs with an arbitrary number of parameters by simply using more hardware. At the core of our method lies a novel distributed training and rendering formulation, which is mathematically equivalent to the classic single-GPU case and minimizes communication between GPUs. By unlocking NeRFs with arbitrarily large parameter counts, our approach is the first to reveal multi-GPU scaling laws for NeRFs, showing improvements in reconstruction quality with larger parameter counts and speed improvements with more GPUs. We demonstrate the effectiveness of NeRF-XL on a wide variety of datasets, including the largest open-source dataset to date, MatrixCity, containing 258K images covering a 25km^2 city area.
The late interaction paradigm introduced with ColBERT stands out in the neural Information Retrieval space, offering a compelling effectiveness-efficiency trade-off across many benchmarks. Efficient late interaction retrieval is based on an optimized multi-step strategy, where an approximate search first identifies a set of candidate documents to re-rank exactly. In this work, we introduce SPLATE, a simple and lightweight adaptation of the ColBERTv2 model which learns an ``MLM adapter'', mapping its frozen token embeddings to a sparse vocabulary space with a partially learned SPLADE module. This allows us to perform the candidate generation step in late interaction pipelines with traditional sparse retrieval techniques, making it particularly appealing for running ColBERT in CPU environments. Our SPLATE ColBERTv2 pipeline achieves the same effectiveness as the PLAID ColBERTv2 engine by re-ranking 50 documents that can be retrieved under 10ms.
Visual Commonsense Reasoning (VCR) is a cognitive task, challenging models to answer visual questions requiring human commonsense, and to provide rationales explaining why the answers are correct. With emergence of Large Language Models (LLMs), it is natural and imperative to explore their applicability to VCR. However, VCR task demands more external knowledge to tackle its challenging questions, necessitating special designs to activate LLMs' commonsense reasoning abilities. Also, most existing Multimodal LLMs adopted an abstraction of entire input image, which makes it difficult to comprehend VCR's unique co-reference tags between image regions and text, posing challenges for fine-grained alignment. To address these issues, we propose EventLens that leverages Event-Aware Pretraining and Cross-modal Linking and EnhanceS VCR. First, by emulating the cognitive process of human reasoning, an Event-Aware Pretraining auxiliary task is introduced to better activate LLM's global comprehension of intricate scenarios. Second, during fine-tuning, we further utilize reference tags to bridge RoI features with texts, while preserving both modality semantics. Finally, we use instruct-style prompts to narrow the gap between pretraining and fine-tuning, and task-specific adapters to better integrate LLM's inherent knowledge with new commonsense. Experimental results show the effectiveness of our proposed auxiliary task and fine-grained linking strategy.
We present a differentiable representation, DMesh, for general 3D triangular meshes. DMesh considers both the geometry and connectivity information of a mesh. In our design, we first get a set of convex tetrahedra that compactly tessellates the domain based on Weighted Delaunay Triangulation (WDT), and formulate probability of faces to exist on our desired mesh in a differentiable manner based on the WDT. This enables DMesh to represent meshes of various topology in a differentiable way, and allows us to reconstruct the mesh under various observations, such as point cloud and multi-view images using gradient-based optimization. The source code and full paper is available at: //sonsang.github.io/dmesh-project.
Current methods for 3D reconstruction and environmental mapping frequently face challenges in achieving high precision, highlighting the need for practical and effective solutions. In response to this issue, our study introduces FlyNeRF, a system integrating Neural Radiance Fields (NeRF) with drone-based data acquisition for high-quality 3D reconstruction. Utilizing unmanned aerial vehicle (UAV) for capturing images and corresponding spatial coordinates, the obtained data is subsequently used for the initial NeRF-based 3D reconstruction of the environment. Further evaluation of the reconstruction render quality is accomplished by the image evaluation neural network developed within the scope of our system. According to the results of the image evaluation module, an autonomous algorithm determines the position for additional image capture, thereby improving the reconstruction quality. The neural network introduced for render quality assessment demonstrates an accuracy of 97%. Furthermore, our adaptive methodology enhances the overall reconstruction quality, resulting in an average improvement of 2.5 dB in Peak Signal-to-Noise Ratio (PSNR) for the 10% quantile. The FlyNeRF demonstrates promising results, offering advancements in such fields as environmental monitoring, surveillance, and digital twins, where high-fidelity 3D reconstructions are crucial.
Large Vision Language Models (VLMs), such as CLIP, have significantly contributed to various computer vision tasks, including object recognition and object detection. Their open vocabulary feature enhances their value. However, their black-box nature and lack of explainability in predictions make them less trustworthy in critical domains. Recently, some work has been done to force VLMs to provide reasonable rationales for object recognition, but this often comes at the expense of classification accuracy. In this paper, we first propose a mathematical definition of explainability in the object recognition task based on the joint probability distribution of categories and rationales, then leverage this definition to fine-tune CLIP in an explainable manner. Through evaluations of different datasets, our method demonstrates state-of-the-art performance in explainable classification. Notably, it excels in zero-shot settings, showcasing its adaptability. This advancement improves explainable object recognition, enhancing trust across diverse applications. The code will be made available online upon publication.
Events refer to specific occurrences, incidents, or happenings that take place under a particular background. Event reasoning aims to infer events according to certain relations and predict future events. The cutting-edge techniques for event reasoning play a crucial role in various natural language processing applications. Large language models (LLMs) have made significant advancements in event reasoning owing to their wealth of knowledge and reasoning capabilities. However, smaller instruction-tuned models currently in use do not consistently demonstrate exceptional proficiency in managing these tasks. This discrepancy arises from the absence of explicit modeling of events and the interconnections of them within their instruction data. Consequently, these models face challenges in comprehending event structures and semantics while struggling to bridge the gap between their interpretations and human understanding of events. Additionally, their limitations in grasping event relations lead to constrained event reasoning abilities to effectively deduce and incorporate pertinent event knowledge. In this paper, we propose Event-Oriented Instruction Tuning (EvIT) to train our LLM. Specifically, we first propose a novel structure named event quadruple which contains the structure and semantics of events and is complete in the event representation. We then design event-relation learning based on the structures. We encapsulate the learning into the instruction-tuning formulation to better stimulate the event reasoning capacity of our model. We design a heuristic unsupervised method to mine event quadruple from a large-scale corpus. At last, we finetune a Llama model on our Event-Oriented Instruction Tuning. We conduct extensive experiments on event reasoning tasks on several datasets. Automatic and human evaluations demonstrate EvIT achieves competitive performances on event reasoning.
The potential of automatic task-solving through Large Language Model (LLM)-based multi-agent collaboration has recently garnered widespread attention from both the research community and industry. While utilizing natural language to coordinate multiple agents presents a promising avenue for democratizing agent technology for general users, designing coordination strategies remains challenging with existing coordination frameworks. This difficulty stems from the inherent ambiguity of natural language for specifying the collaboration process and the significant cognitive effort required to extract crucial information (e.g. agent relationship, task dependency, result correspondence) from a vast amount of text-form content during exploration. In this work, we present a visual exploration framework to facilitate the design of coordination strategies in multi-agent collaboration. We first establish a structured representation for LLM-based multi-agent coordination strategy to regularize the ambiguity of natural language. Based on this structure, we devise a three-stage generation method that leverages LLMs to convert a user's general goal into an executable initial coordination strategy. Users can further intervene at any stage of the generation process, utilizing LLMs and a set of interactions to explore alternative strategies. Whenever a satisfactory strategy is identified, users can commence the collaboration and examine the visually enhanced execution result. We develop AgentCoord, a prototype interactive system, and conduct a formal user study to demonstrate the feasibility and effectiveness of our approach.
Self-supervised learning methods are gaining increasing traction in computer vision due to their recent success in reducing the gap with supervised learning. In natural language processing (NLP) self-supervised learning and transformers are already the methods of choice. The recent literature suggests that the transformers are becoming increasingly popular also in computer vision. So far, the vision transformers have been shown to work well when pretrained either using a large scale supervised data or with some kind of co-supervision, e.g. in terms of teacher network. These supervised pretrained vision transformers achieve very good results in downstream tasks with minimal changes. In this work we investigate the merits of self-supervised learning for pretraining image/vision transformers and then using them for downstream classification tasks. We propose Self-supervised vIsion Transformers (SiT) and discuss several self-supervised training mechanisms to obtain a pretext model. The architectural flexibility of SiT allows us to use it as an autoencoder and work with multiple self-supervised tasks seamlessly. We show that a pretrained SiT can be finetuned for a downstream classification task on small scale datasets, consisting of a few thousand images rather than several millions. The proposed approach is evaluated on standard datasets using common protocols. The results demonstrate the strength of the transformers and their suitability for self-supervised learning. We outperformed existing self-supervised learning methods by large margin. We also observed that SiT is good for few shot learning and also showed that it is learning useful representation by simply training a linear classifier on top of the learned features from SiT. Pretraining, finetuning, and evaluation codes will be available under: //github.com/Sara-Ahmed/SiT.