亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Group recommender systems (GRS) identify items to recommend to a group by aggregating group members' individual preferences into a group profile. The preference aggregation strategy used to build the group profile can also be used for predicting the item that a group may decide to choose, i.e., by assuming that the group is applying exactly that strategy. However, predicting the choice of a group is challenging since the RS is not aware of the precise preference aggregation strategy that is going to be used by the group. Hence, the aim of this paper is to validate the research hypothesis that, by using a machine learning approach and a data set of observed group choices, it is possible to predict a group's final choice, better than by using a standard preference aggregation strategy. Inspired by Social Decision Scheme theory, which first tried to address the group choice prediction problem, we search for a group profile definition that, in conjunction with a machine learning model, can be used to accurately predict a group choice. Moreover, to cope with the data scarcity problem, we propose two data augmentation methods, which add synthetic group profiles to the training data, and we hypothesise they can further improve the choice prediction accuracy. We validate our research hypotheses by using a data set containing 282 participants organized in 79 groups. The experiments indicate that the proposed methods outperform baseline aggregation strategies when used for group choice prediction. The proposed method is robust with the presence of missing preference data and achieves a performance superior to what human can achieve on the group choice prediction task. Finally, the proposed data augmentation method can also improve the prediction accuracy. Our approach can be exploited in novel GRSs to identify the items that the group is likely to choose and help the group to make a better choice.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · 線性的 · 約束 · Learning · Subspace ·
2023 年 9 月 27 日

Stacking regressions is an ensemble technique that forms linear combinations of different regression estimators to enhance predictive accuracy. The conventional approach uses cross-validation data to generate predictions from the constituent estimators, and least-squares with nonnegativity constraints to learn the combination weights. In this paper, we learn these weights analogously by minimizing an estimate of the population risk subject to a nonnegativity constraint. When the constituent estimators are linear least-squares projections onto nested subspaces separated by at least three dimensions, we show that thanks to a shrinkage effect, the resulting stacked estimator has strictly smaller population risk than best single estimator among them. Here "best" refers to an estimator that minimizes a model selection criterion such as AIC or BIC. In other words, in this setting, the best single estimator is inadmissible. Because the optimization problem can be reformulated as isotonic regression, the stacked estimator requires the same order of computation as the best single estimator, making it an attractive alternative in terms of both performance and implementation.

Many deployments of differential privacy in industry are in the local model, where each party releases its private information via a differentially private randomizer. We study triangle counting in the noninteractive and interactive local model with edge differential privacy (that, intuitively, requires that the outputs of the algorithm on graphs that differ in one edge be indistinguishable). In this model, each party's local view consists of the adjacency list of one vertex. In the noninteractive model, we prove that additive $\Omega(n^2)$ error is necessary, where $n$ is the number of nodes. This lower bound is our main technical contribution. It uses a reconstruction attack with a new class of linear queries and a novel mix-and-match strategy of running the local randomizers with different completions of their adjacency lists. It matches the additive error of the algorithm based on Randomized Response, proposed by Imola, Murakami and Chaudhuri (USENIX2021) and analyzed by Imola, Murakami and Chaudhuri (CCS2022) for constant $\varepsilon$. We use a different postprocessing of Randomized Response and provide tight bounds on the variance of the resulting algorithm. In the interactive setting, we prove a lower bound of $\Omega(n^{3/2})$ on the additive error. Previously, no hardness results were known for interactive, edge-private algorithms in the local model, except for those that follow trivially from the results for the central model. Our work significantly improves on the state of the art in differentially private graph analysis in the local model.

This paper studies the case of possibly high-dimensional covariates in the regression discontinuity design (RDD) analysis. In particular, we propose estimation and inference methods for the RDD models with covariate selection which perform stably regardless of the number of covariates. The proposed methods combine the local approach using kernel weights with $\ell_{1}$-penalization to handle high-dimensional covariates. We provide theoretical and numerical results which illustrate the usefulness of the proposed methods. Theoretically, we present risk and coverage properties for our point estimation and inference methods, respectively. Under certain special case, the proposed estimator becomes more efficient than the conventional covariate adjusted estimator at the cost of an additional sparsity condition. Numerically, our simulation experiments and empirical example show the robust behaviors of the proposed methods to the number of covariates in terms of bias and variance for point estimation and coverage probability and interval length for inference.

When researching robot swarms, many studies observe complex group behavior emerging from the individual agents' simple local actions. However, the task of learning an individual policy to produce a desired emergent behavior remains a challenging and largely unsolved problem. We present a method of training distributed robotic swarm algorithms to produce emergent behavior. Inspired by the biological evolution of emergent behavior in animals, we use an evolutionary algorithm to train a 'population' of individual behaviors to approximate a desired group behavior. We perform experiments using simulations of the Georgia Tech Miniature Autonomous Blimps (GT-MABs) aerial robotics platforms conducted in the CoppeliaSim simulator. Additionally, we test on simulations of Anki Vector robots to display our algorithm's effectiveness on various modes of actuation. We evaluate our algorithm on various tasks where a somewhat complex group behavior is required for success. These tasks include an Area Coverage task, a Surround Target task, and a Wall Climb task. We compare behaviors evolved using our algorithm against 'designed policies', which we create in order to exhibit the emergent behaviors we desire.

Reserve systems are used to accommodate multiple essential or underrepresented groups in allocating indivisible scarce resources by creating categories that prioritize their respective beneficiaries. Some applications include the optimal allocation of vaccines, or assignment of minority students to elite colleges in India. An allocation is called smart if it optimizes the number of units distributed. Previous literature mostly assumed baseline priorities, which impose significant interdependencies between the priority ordering of different categories. It also assumes either everybody is eligible for receiving a unit from any category, or only the beneficiaries are eligible. The comprehensive Threshold Model we propose allows independent priority orderings among categories and arbitrary beneficiary and eligibility thresholds, enabling policymakers to avoid comparing incomparables in affirmative action systems. We present a new smart reserve system that optimizes two objectives simultaneously to allocate scarce resources. Our Smart Pipeline Matching Mechanism achieves all desirable properties in the most general domain possible. Our results apply to any resource allocation market, but we focus our attention on the vaccine allocation problem.

Open-set object detection aims at detecting arbitrary categories beyond those seen during training. Most recent advancements have adopted the open-vocabulary paradigm, utilizing vision-language backbones to represent categories with language. In this paper, we introduce DE-ViT, an open-set object detector that employs vision-only DINOv2 backbones and learns new categories through example images instead of language. To improve general detection ability, we transform multi-classification tasks into binary classification tasks while bypassing per-class inference, and propose a novel region propagation technique for localization. We evaluate DE-ViT on open-vocabulary, few-shot, and one-shot object detection benchmark with COCO and LVIS. For COCO, DE-ViT outperforms the open-vocabulary SoTA by 6.9 AP50 and achieves 50 AP50 in novel classes. DE-ViT surpasses the few-shot SoTA by 15 mAP on 10-shot and 7.2 mAP on 30-shot and one-shot SoTA by 2.8 AP50. For LVIS, DE-ViT outperforms the open-vocabulary SoTA by 2.2 mask AP and reaches 34.3 mask APr. Code is available at //github.com/mlzxy/devit.

Memory interference may heavily inflate task execution times in Heterogeneous Systems-on-Chips (HeSoCs). Knowing worst-case interference is consequently fundamental for supporting the correct execution of time-sensitive applications. In most of the literature, worst-case interference is assumed to be generated by, and therefore is estimated through read-intensive synthetic workloads with no caching. Yet these workloads do not always generate worst-case interference. This is the consequence of the general results reported in this work. By testing on multiple architectures, we determined that the highest interference generation traffic pattern is actually hardware dependant, and that making assumptions could lead to a severe underestimation of the worst-case (in our case, of more than 9x).

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司