亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The deformed energy method has shown to be a good option for dimensional synthesis of mechanisms. In this paper the introduction of some new features to such approach is proposed. First, constraints fixing dimensions of certain links are introduced in the error function of the synthesis problem. Second, requirements on distances between determinate nodes are included in the error function for the analysis of the deformed position problem. Both the overall synthesis error function and the inner analysis error function are optimized using a Sequential Quadratic Problem (SQP) approach. This also reduces the probability of branch or circuit defects. In the case of the inner function analytical derivatives are used, while in the synthesis optimization approximate derivatives have been introduced. Furthermore, constraints are analyzed under two formulations, the Euclidean distance and an alternative approach that uses the previous raised to the power of two. The latter approach is often used in kinematics, and simplifies the computation of derivatives. Some examples are provided to show the convergence order of the error function and the fulfilment of the constraints in both formulations studied under different topological situations or achieved energy levels.

相關內容

In this paper we consider functional data with heterogeneity in time and in population. We propose a mixture model with segmentation of time to represent this heterogeneity while keeping the functional structure. Maximum likelihood estimator is considered, proved to be identifiable and consistent. In practice, an EM algorithm is used, combined with dynamic programming for the maximization step, to approximate the maximum likelihood estimator. The method is illustrated on a simulated dataset, and used on a real dataset of electricity consumption.

Electrohydrodynamics is a discipline that studies the interaction between fluid motion and electric field. Finite element method, finite difference method and other numerical simulations are effective numerical calculation methods for electrofluid dynamics models. In this paper, the finite element format of the electrofluid dynamics model is established, and the second-order convergence accuracy of the format is achieved through time filtering method. Finally, a numerical example is given to verify the convergence.

The numerical treatment of fluid-particle systems is a very challenging problem because of the complex coupling phenomena occurring between the two phases. Although accurate mathematical modelling is available to address this kind of application, the computational cost of the numerical simulations is very expensive. The use of the most modern high-performance computing infrastructures could help to mitigate such an issue but not completely fix it. In this work, we develop a non-intrusive data-driven reduced order model (ROM) for Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations. The ROM is built using the proper orthogonal decomposition (POD) for the computation of the reduced basis space and the Long Short-Term Memory (LSTM) network for the computation of the reduced coefficients. We are interested in dealing both with system identification and prediction. The most relevant novelties rely on (i) a filtering procedure of the full-order snapshots to reduce the dimensionality of the reduced problem and (ii) a preliminary treatment of the particle phase. The accuracy of our ROM approach is assessed against the classic Goldschmidt fluidized bed benchmark problem. Finally, we also provide some insights about the efficiency of our ROM approach.

The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solutions. For the corresponding spatial approximations, an independently refined finite element mesh is used for each polynomial coefficient. The method relies on multilevel expansions of input random fields and achieves error reduction with uniform rate. In particular, the saturation property for the refinement process is ensured by the algorithm. The results are illustrated by numerical experiments, including cases with random fields of low regularity.

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.

In this article, the stabilizer free weak Galerkin (SFWG) finite element method is applied to the Ciarlet-Raviart mixed form of the Biharmonic equation. We utilize the SFWG solutions of the second elliptic problems to define projection operators, build error equations, and further derive the error estimates. Finally, numerical examples support the results reached by the theory.

Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function. The results hold for arbitrary exchangeable scores, including adaptive ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.

We propose a novel time stepping method for linear poroelasticity by extending a recent iterative decoupling approach to the second-order case. This results in a two-step scheme with an inner iteration and a relaxation step. We prove second-order convergence for a prescribed number of inner iteration steps, only depending on the coupling strength of the elastic and the flow equation. The efficiency of the scheme is illustrated by a number of numerical experiments, including a simulation of three-dimensional brain tissue.

In this paper we apply the stochastic variance reduced gradient (SVRG) method, which is a popular variance reduction method in optimization for accelerating the stochastic gradient method, to solve large scale linear ill-posed systems in Hilbert spaces. Under {\it a priori} choices of stopping indices, we derive a convergence rate result when the sought solution satisfies a benchmark source condition and establish a convergence result without using any source condition. To terminate the method in an {\it a posteriori} manner, we consider the discrepancy principle and show that it terminates the method in finite many iteration steps almost surely. Various numerical results are reported to test the performance of the method.

We consider the fundamental task of optimising a real-valued function defined in a potentially high-dimensional Euclidean space, such as the loss function in many machine-learning tasks or the logarithm of the probability distribution in statistical inference. We use Riemannian geometry notions to redefine the optimisation problem of a function on the Euclidean space to a Riemannian manifold with a warped metric, and then find the function's optimum along this manifold. The warped metric chosen for the search domain induces a computational friendly metric-tensor for which optimal search directions associated with geodesic curves on the manifold becomes easier to compute. Performing optimization along geodesics is known to be generally infeasible, yet we show that in this specific manifold we can analytically derive Taylor approximations up to third-order. In general these approximations to the geodesic curve will not lie on the manifold, however we construct suitable retraction maps to pull them back onto the manifold. Therefore, we can efficiently optimize along the approximate geodesic curves. We cover the related theory, describe a practical optimization algorithm and empirically evaluate it on a collection of challenging optimisation benchmarks. Our proposed algorithm, using 3rd-order approximation of geodesics, tends to outperform standard Euclidean gradient-based counterparts in term of number of iterations until convergence.

北京阿比特科技有限公司