亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Growing awareness of the impact of business activity on the environment increases the pressure on governing bodies to address this issue. One possibility is to encourage or force the market into green behaviours. However, it is often hard to predict how different actions affect the market. Thus, to help with that, in this paper, we have proposed the green behaviour spreading model in the bank-company multilayer network. This model allows assessing how various elements like the duration of external influence, targeted market segment, or intensity of action affect the outcome regarding market greening level. The model evaluation results indicate that governing bodies, depending on the market "openness" to green activities, can adjust the duration and intensity of the proposed action. The strength of the impact can be changed by the public or private authority with the use of obligatory or voluntary rules and the proportion of influenced banks. This research may be helpful in the process of creating the optimal setups and increasing the performance of greening policies implementation.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 機器人 · 峰值 · MoDELS · 向量化 ·
2022 年 12 月 1 日

With the goal of enabling the exploitation of impacts in robotic manipulation, a new framework is presented for control of robotic manipulators that are tasked to execute nominally simultaneous impacts. In this framework, we employ tracking of time-invariant reference vector fields corresponding to the ante- and post-impact motion, increasing its applicability over similar conventional tracking control approaches. The ante- and post-impact references are coupled through a rigid impact map, and are extended to overlap around the area where the impact is expected to take place, such that the reference corresponding to the actual contact state of the robot can always be followed. As a sequence of impacts at the different contact points will typically occur, resulting in uncertainty of the contact mode and unreliable velocity measurements, a new interim control mode catered towards time-invariant references is formulated. In this mode, a position feedback signal is derived from the ante-impact velocity reference, which is used to enforce sustained contact in all contact points without using velocity feedback. With an eye towards real implementation, the approach is formulated using a QP control framework, and is validated using numerical simulations both on a rigid robot with a hard inelastic contact model and on a realistic robot model with flexible joints and compliant partially elastic contact model.

Information Retrieval evaluation has traditionally focused on defining principled ways of assessing the relevance of a ranked list of documents with respect to a query. Several methods extend this type of evaluation beyond relevance, making it possible to evaluate different aspects of a document ranking (e.g., relevance, usefulness, or credibility) using a single measure (multi-aspect evaluation). However, these methods either are (i) tailor-made for specific aspects and do not extend to other types or numbers of aspects, or (ii) have theoretical anomalies, e.g. assign maximum score to a ranking where all documents are labelled with the lowest grade with respect to all aspects (e.g., not relevant, not credible, etc.). We present a theoretically principled multi-aspect evaluation method that can be used for any number, and any type, of aspects. A thorough empirical evaluation using up to 5 aspects and a total of 425 runs officially submitted to 10 TREC tracks shows that our method is more discriminative than the state-of-the-art and overcomes theoretical limitations of the state-of-the-art.

Ensuring safety is of paramount importance in physical human-robot interaction applications. This requires both an adherence to safety constraints defined on the system state, as well as guaranteeing compliant behaviour of the robot. If the underlying dynamical system is known exactly, the former can be addressed with the help of control barrier functions. Incorporation of elastic actuators in the robot's mechanical design can address the latter requirement. However, this elasticity can increase the complexity of the resulting system, leading to unmodeled dynamics, such that control barrier functions cannot directly ensure safety. In this paper, we mitigate this issue by learning the unknown dynamics using Gaussian process regression. By employing the model in a feedback linearizing control law, the safety conditions resulting from control barrier functions can be robustified to take into account model errors, while remaining feasible. In order enforce them on-line, we formulate the derived safety conditions in the form of a second-order cone program. We demonstrate our proposed approach with simulations on a two-degree of freedom planar robot with elastic joints.

Auto-regressive moving-average (ARMA) models are ubiquitous forecasting tools. Parsimony in such models is highly valued for their interpretability and computational tractability, and as such the identification of model orders remains a fundamental task. We propose a novel method of ARMA order identification through projection predictive inference, which is grounded in Bayesian decision theory and naturally allows for uncertainty communication. It benefits from improved stability through the use of a reference model. The procedure consists of two steps: in the first, the practitioner incorporates their understanding of underlying data-generating process into a reference model, which we latterly project onto possibly parsimonious submodels. These submodels are optimally inferred to best replicate the predictive performance of the reference model. We further propose a search heuristic amenable to the ARMA framework. We show that the submodels selected by our procedure exhibit predictive performance at least as good as those produced by auto.arima over simulated and real-data experiments, and in some cases out-perform the latter. Finally we show that our procedure is robust to noise, and scales well to larger data.

We consider estimation under model misspecification where there is a model mismatch between the underlying system, which generates the data, and the model used during estimation. We propose a model misspecification framework which enables a joint treatment of the model misspecification types of having fake features as well as incorrect covariance assumptions on the unknowns and the noise. We present a decomposition of the output error into components that relate to different subsets of the model parameters corresponding to underlying, fake and missing features. Here, fake features are features which are included in the model but are not present in the underlying system. Under this framework, we characterize the estimation performance and reveal trade-offs between the number of samples, number of fake features, and the possibly incorrect noise level assumption. In contrast to existing work focusing on incorrect covariance assumptions or missing features, fake features is a central component of our framework. Our results show that fake features can significantly improve the estimation performance, even though they are not correlated with the features in the underlying system. In particular, we show that the estimation error can be decreased by including more fake features in the model, even to the point where the model is overparametrized, i.e., the model contains more unknowns than observations.

Offline reinforcement learning (RL) have received rising interest due to its appealing data efficiency. The present study addresses behavior estimation, a task that lays the foundation of many offline RL algorithms. Behavior estimation aims at estimating the policy with which training data are generated. In particular, this work considers a scenario where the data are collected from multiple sources. In this case, neglecting data heterogeneity, existing approaches for behavior estimation suffers from behavior misspecification. To overcome this drawback, the present study proposes a latent variable model to infer a set of policies from data, which allows an agent to use as behavior policy the policy that best describes a particular trajectory. This model provides with a agent fine-grained characterization for multi-source data and helps it overcome behavior misspecification. This work also proposes a learning algorithm for this model and illustrates its practical usage via extending an existing offline RL algorithm. Lastly, with extensive evaluation this work confirms the existence of behavior misspecification and the efficacy of the proposed model.

Bayesian adaptive experimental design is a form of active learning, which chooses samples to maximize the information they give about uncertain parameters. Prior work has shown that other forms of active learning can suffer from active learning bias, where unrepresentative sampling leads to inconsistent parameter estimates. We show that active learning bias can also afflict Bayesian adaptive experimental design, depending on model misspecification. We analyze the case of estimating a linear model, and show that worse misspecification implies more severe active learning bias. At the same time, model classes incorporating more "noise" - i.e., specifying higher inherent variance in observations - suffer less from active learning bias. Finally, we demonstrate empirically that insights from the linear model can predict the presence and degree of active learning bias in nonlinear contexts, namely in a (simulated) preference learning experiment.

Mobility systems often suffer from a high price of anarchy due to the uncontrolled behavior of selfish users. This may result in societal costs that are significantly higher compared to what could be achieved by a centralized system-optimal controller. Monetary tolling schemes can effectively align the behavior of selfish users with the system-optimum. Yet, they inevitably discriminate the population in terms of income. Artificial currencies were recently presented as an effective alternative that can achieve the same performance, whilst guaranteeing fairness among the population. However, those studies were based on behavioral models that may differ from practical implementations. This paper presents a data-driven approach to automatically adapt artificial-currency tolls within repetitive-game settings. We first consider a parallel-arc setting whereby users commute on a daily basis from a unique origin to a unique destination, choosing a route in exchange of an artificial-currency price or reward while accounting for the impact of the choices of the other users on travel discomfort. Second, we devise a model-based reinforcement learning controller that autonomously learns the optimal pricing policy by interacting with the proposed framework considering the closeness of the observed aggregate flows to a desired system-optimal distribution as a reward function. Our numerical results show that the proposed data-driven pricing scheme can effectively align the users' flows with the system optimum, significantly reducing the societal costs with respect to the uncontrolled flows (by about 15% and 25% depending on the scenario), and respond to environmental changes in a robust and efficient manner.

Face recognition algorithms, when used in the real world, can be very useful, but they can also be dangerous when biased toward certain demographics. So, it is essential to understand how these algorithms are trained and what factors affect their accuracy and fairness to build better ones. In this study, we shed some light on the effect of racial distribution in the training data on the performance of face recognition models. We conduct 16 different experiments with varying racial distributions of faces in the training data. We analyze these trained models using accuracy metrics, clustering metrics, UMAP projections, face quality, and decision thresholds. We show that a uniform distribution of races in the training datasets alone does not guarantee bias-free face recognition algorithms and how factors like face image quality play a crucial role. We also study the correlation between the clustering metrics and bias to understand whether clustering is a good indicator of bias. Finally, we introduce a metric called racial gradation to study the inter and intra race correlation in facial features and how they affect the learning ability of the face recognition models. With this study, we try to bring more understanding to an essential element of face recognition training, the data. A better understanding of the impact of training data on the bias of face recognition algorithms will aid in creating better datasets and, in turn, better face recognition systems.

A variety of deep neural networks have been applied in medical image segmentation and achieve good performance. Unlike natural images, medical images of the same imaging modality are characterized by the same pattern, which indicates that same normal organs or tissues locate at similar positions in the images. Thus, in this paper we try to incorporate the prior knowledge of medical images into the structure of neural networks such that the prior knowledge can be utilized for accurate segmentation. Based on this idea, we propose a novel deep network called knowledge-based fully convolutional network (KFCN) for medical image segmentation. The segmentation function and corresponding error is analyzed. We show the existence of an asymptotically stable region for KFCN which traditional FCN doesn't possess. Experiments validate our knowledge assumption about the incorporation of prior knowledge into the convolution kernels of KFCN and show that KFCN can achieve a reasonable segmentation and a satisfactory accuracy.

北京阿比特科技有限公司