Thirty-six years after the first edition of IEEE standard 982.1, Measures of the Software Aspects of Dependability, the third edition focuses on the measurement of in-service software dependability. This article explains how this new point of view evolved and shaped the third edition's guidance for software dependability measurement.
This paper explores a new version of the Levenberg-Marquardt algorithm used for Tensor Canonical Polyadic (CP) decomposition with an emphasis on image compression and reconstruction. Tensor computation, especially CP decomposition, holds significant applications in data compression and analysis. In this study, we formulate CP as a nonlinear least squares optimization problem. Then, we present an iterative Levenberg-Marquardt (LM) based algorithm for computing the CP decomposition. Ultimately, we test the algorithm on various datasets, including randomly generated tensors and RGB images. The proposed method proves to be both efficient and effective, offering a reduced computational burden when compared to the traditional Levenberg-Marquardt technique.
The authors of 'Unsupervised Reinforcement Learning in Multiple environments' propose a method, alpha-MEPOL, to tackle unsupervised RL across multiple environments. They pre-train a task-agnostic exploration policy using interactions from an entire environment class and then fine-tune this policy for various tasks using supervision. We expanded upon this work, with the goal of improving performance. We primarily propose and experiment with five new modifications to the original work: sampling trajectories using an entropy-based probability distribution, dynamic alpha, higher KL Divergence threshold, curiosity-driven exploration, and alpha-percentile sampling on curiosity. Dynamic alpha and higher KL-Divergence threshold both provided a significant improvement over the baseline from the earlier work. PDF-sampling failed to provide any improvement due to it being approximately equivalent to the baseline method when the sample space is small. In high-dimensional environments, the addition of curiosity-driven exploration enhances learning by encouraging the agent to seek diverse experiences and explore the unknown more. However, its benefits are limited in low-dimensional and simpler environments where exploration possibilities are constrained and there is little that is truly unknown to the agent. Overall, some of our experiments did boost performance over the baseline and there are a few directions that seem promising for further research.
This paper discusses one of the most challenging practical engineering problems in speaker recognition systems - the version control of models and user profiles. A typical speaker recognition system consists of two stages: the enrollment stage, where a profile is generated from user-provided enrollment audio; and the runtime stage, where the voice identity of the runtime audio is compared against the stored profiles. As technology advances, the speaker recognition system needs to be updated for better performance. However, if the stored user profiles are not updated accordingly, version mismatch will result in meaningless recognition results. In this paper, we describe different version control strategies for speaker recognition systems that had been carefully studied at Google from years of engineering practice. These strategies are categorized into three groups according to how they are deployed in the production environment: device-side deployment, server-side deployment, and hybrid deployment. To compare different strategies with quantitative metrics under various network configurations, we present SpeakerVerSim, an easily-extensible Python-based simulation framework for different server-side deployment strategies of speaker recognition systems.
Multimodal Large Language Models (MLLMs) are experiencing rapid growth, yielding a plethora of noteworthy contributions in recent months. The prevailing trend involves adopting data-driven methodologies, wherein diverse instruction-following datasets are collected. However, a prevailing challenge persists in these approaches, specifically in relation to the limited visual perception ability, as CLIP-like encoders employed for extracting visual information from inputs. Though these encoders are pre-trained on billions of image-text pairs, they still grapple with the information loss dilemma, given that textual captions only partially capture the contents depicted in images. To address this limitation, this paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism. Specifically, we introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline, aiming to provide a more comprehensive and accurate summarization of visual inputs. Extensive experiments have evaluated its effectiveness of advancing MLLMs, showcasing improved visual perception achieved through the integration of visual experts.
We study the problem of exact community recovery in the Geometric Stochastic Block Model (GSBM), where each vertex has an unknown community label as well as a known position, generated according to a Poisson point process in $\mathbb{R}^d$. Edges are formed independently conditioned on the community labels and positions, where vertices may only be connected by an edge if they are within a prescribed distance of each other. The GSBM thus favors the formation of dense local subgraphs, which commonly occur in real-world networks, a property that makes the GSBM qualitatively very different from the standard Stochastic Block Model (SBM). We propose a linear-time algorithm for exact community recovery, which succeeds down to the information-theoretic threshold, confirming a conjecture of Abbe, Baccelli, and Sankararaman. The algorithm involves two phases. The first phase exploits the density of local subgraphs to propagate estimated community labels among sufficiently occupied subregions, and produces an almost-exact vertex labeling. The second phase then refines the initial labels using a Poisson testing procedure. Thus, the GSBM enjoys local to global amplification just as the SBM, with the advantage of admitting an information-theoretically optimal, linear-time algorithm.
A family of leaderless, decentralized consensus protocols, called Snow consensus was introduced in a recent whitepaper by Yin et al. These protocols address limitations of existing consensus methods, such as those using proof-of-work or quorums, by utilizing randomization and maintaining some level of resilience against Byzantine participants. Crucially, Snow consensus underpins the Avalanche blockchain, which provides a popular cryptocurrency and a platform for running smart contracts. Snow consensus algorithms are built on a natural, randomized routine, whereby participants continuously sample subsets of others and adopt an observed majority value until consensus is achieved. Additionally, Snow consensus defines conditions based on participants' local views and security parameters. These conditions indicate when a party can confidently finalize its local value, knowing it will be adopted by honest participants. Although Snow consensus algorithms can be formulated concisely, there is a complex interaction between randomization, adversarial influence, and security parameters, which requires a formal analysis of their security and liveness. Snow protocols form the foundation for Avalanche-type blockchains, and this work aims to increase our understanding of such protocols by providing insights into their liveness and safety characteristics. First, we analyze these Snow protocols in terms of latency and security. Second, we expose a design issue where the trade-off between these two is unfavorable. Third, we propose a modification of the original protocol where this trade-off is much more favorable.
This paper focuses on addressing the issue of image demoireing. Unlike the large volume of existing studies that rely on learning from paired real data, we attempt to learn a demoireing model from unpaired real data, i.e., moire images associated with irrelevant clean images. The proposed method, referred to as Unpaired Demoireing (UnDeM), synthesizes pseudo moire images from unpaired datasets, generating pairs with clean images for training demoireing models. To achieve this, we divide real moire images into patches and group them in compliance with their moire complexity. We introduce a novel moire generation framework to synthesize moire images with diverse moire features, resembling real moire patches, and details akin to real moire-free images. Additionally, we introduce an adaptive denoise method to eliminate the low-quality pseudo moire images that adversely impact the learning of demoireing models. We conduct extensive experiments on the commonly-used FHDMi and UHDM datasets. Results manifest that our UnDeM performs better than existing methods when using existing demoireing models such as MBCNN and ESDNet-L. Code: //github.com/zysxmu/UnDeM
The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.
Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.
Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.